xy'+y=y(lnx+lny)求通解

如题所述

解:设t=xy,则y=t/x,y'=(xt'-t)/x²
代入原方程,得x((xt'-t)/x²)+t/x=(t/x)(lnx+ln(t/x))
==>t'-t/x+t/x=(t/x)lnt
==>t'=tlnt/x
==>dt/(tlnt)=dx/x
==>d(lnt)/lnt=dx/x
==>ln│lnt│=ln│x│+ln│C1│
(C1是积分常数)
==>lnt=C1x
==>t=e^(C1x)
==>xy=C^x
(C=e^C1,也是积分常数)
故原方程的通解是xy=C^x
(C是积分常数)。
也可以这样解决
xy'+y=y(lnx+lny)
(xy)'=yln(xy)
lnxy=u
xy=e^u
(xy)'=u'e^u=ue^u/x
u'=u/x
du/u=dx/x
ln|u|=ln|x|+C0
u=Cx
通解ln(xy)=Cx
温馨提示:答案为网友推荐,仅供参考
相似回答