矩阵对角线上的和等于特征值之和这说法对吗

如题所述

对的。

矩阵特征值的性质:

1、若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

2、若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

3、设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

扩展资料:

求矩阵的全部特征值和特征向量的方法如下:

1、计算的特征多项式

2、求出特征方程的全部根,即为的全部特征值;

3、对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-09-21
对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之和,所以A的迹也等于其特征值之和证明过程比较复杂,如果您需要我可以写上来.本回答被提问者采纳
相似回答