怎么证明收敛数列加发散数列为发散数列?

如题所述

如果{an+bn}收敛

因{an}也收敛

对任何e

都有N1,N2

使k>N1就有 |(ak+bk) - L |<e/2,

k>N2有 |(ak) - A |<e/2

取k>N1,N2中较大者,有|bk-(L-A) |=|(ak+bk)-L+(ak-A)|< |(ak+bk) - L |+|(ak) - A |<e
可知{bn}也收敛,矛盾!

故{an+bn}发散.

把bn化入-bn可知{an-bn}发散.

{anbn}得看{an}的极限A:如果A=0则收歛,否则发散.

{an/bn}:如果{an}->A=0或{bn}->无限大则收敛,否则发散.

定义:

设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。

性质:

唯一性:如果数列xn收敛,每个收敛的数列只有一个极限。

有界性:

定义:设有数列xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列xn有界。

定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界

,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件

保号性:

如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。

温馨提示:答案为网友推荐,仅供参考
相似回答