收敛数列性质的保序性是函数极限的重要性质之一,它是局部保号性的一个推广;如:f(x)>g(x) 则:limf(x)≥limg(x)。
设lim(x→x₀)f(x)=a,lim(x→x₀)g(x)=b;若a小于b,则存在x0点的某个去心邻域,在此邻域内恒有f(x)小于g(x)。
扩展资料:
极限的保号性常与求递推数列极限,极值,拐点,零点定理等一起应用;极限的保号性特别要注意等号的地方。
数列极限的保号性一性质,跟数列极限的定义有关联,数列的极限就是从某一项之后开始算,跟前面的项不是很有关系。保号性也是从某一项之后才开始算的,一定要注意“n>N”这一条件。