点火共式怎么算?

如题所述

∫(0→π/2)[(cos t)^n]dt

=∫(0→π/2)[(sin t)^n]dt

=(n-1)!!/n!!(n为正奇数)

=π(n-1)!!/(2(n!!))(n为正偶数)

这一公式为Wallis公式,是关于圆周率的无穷乘积的公式,但Wallis公式中只有乘除运算,连开方都不需要,形式上十分简单。虽然Wallis公式对π的近似计算没有直接影响,但是在导出Stirling公式中起到了重要作用。

扩展资料:

记忆规律

1、公式中因式每项的分母从n开始,每项减2,直到1;

2、公式中因式每项的分子从n-1开始,每项减2,直到1;

3、n为偶时,最后乘π/2;n为奇时,最后乘1(换而言之,也可视为不再用乘)。

5、形象记忆法:从n开始写分数,可以视为火箭发射倒数计时,成功数到1则视为点火发射成功,乘上二分之派。

参考资料来源:百度百科-点火共式

参考资料来源:百度百科-Wallis公式

温馨提示:答案为网友推荐,仅供参考
相似回答