已知二次函数f(x)=ax^2+bx+c.若对x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=1/2[f(x1)+f(x2)]有两个不等实

已知二次函数f(x)=ax^2+bx+c.若对x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=1/2[f(x1)+f(x2)]有两个不等实根,证明必有一实根属于(x1,x2)

当x2<-b/(2a)或x1>-b/(2a)时:
可知f(x)在(x1,x2)内是单调的。不妨设f(x1)<f(x2),则必有f(x1)<1/2[f(x1)+f(x2)]<f(x2),因此必然存在实数m∈(x1,x2)满足f(m)=1/2[f(x1)+f(x2)]。同理当f(x1)>f(x2)时也成立。
当x1<-b/(2a)且x2>-b/(2a)时:
若-b/(2a)-x1<x2+b/(2a),可设x1′=-b/a-x1,则有f(x1′)=f(x1),且f(x)在(x1′,x2)是单调的,以后证法同上。同理当-b/(2a)-x1>x2+b/(2a)时也成立
温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-10-21
当x2<-b/(2a)或x1>-b/(2a)时:
可知f(x)在(x1,x2)内是单调的。不妨设f(x1)<f(x2),则必有f(x1)<1/2[f(x1)+f(x2)]<f(x2),因此必然存在实数m∈(x1,x2)满足f(m)=1/2[f(x1)+f(x2)]。同理当f(x1)>f(x2)时也成立。
当x1<-b/(2a)且x2>-b/(2a)时:若-b/(2a)-x1<x2+b/(2a),可设x1′=-b/a-x1,则有f(x1′)=f(x1),且f(x)在(x1′,x2)是单调的,以后证法同上。同理当-b/(2a)-x1>x2+b/(2a)时也成立
第2个回答  2010-08-14
他是对的
大家正在搜