请高手指教,高中数学排列组合问题求解释?小球放进盒子里,共两个题目

若将5个不同的小球放入4个不同的盒子里,每个盒子至少放一个,有几种不同的放法?
答案说是 先将5个小球分成4堆,共有5C2种方法:然后再放到4个不同的盒子里,有4A4种,共有4A4*5C2种=240 这种我想的通
我认为 先在5个小球里选出一个来,先不管这个球,那么有5C1种选法,选出了一个还剩4个将这4个球放入4个不同的盒子里,共有4A4种,再将第一次选出的那个小球在四个盒子中选一个盒子放进去,有4C1种选法,则总的有5C1*4A4*4C1种=480种
奇怪啊,哪里有错额!!请高手指教!!

第二题 若5个不同的小球放入4个不同的盒子里,恰有一个空盒子,有多少种不同方法?
答案说 第一步,指定一个空盒,有4C1种;(想得通)
第二步,将5个小球分成三堆,有(5C1*4C1*3C3)/2A2+(5C1*4C2*2C2)/2A2=25种,这我就想不通了,分成三堆就分了呗,干嘛要除以2A2,老师说有顺序额,我就是想不通顺序是什么顺序额??又不敢去问了,怕他K我。。。为什么会有顺序呢??奇怪啊,请高手指教!而且老师又说了,如果把仅仅是把5个小球分成三堆,不放进盒子,那就不用去除以2A2,为什么呀?WHY?这里想不通呀!请高手指教!!哪里来的顺序额。。。求解
第三步把三堆小球放到三个不同的盒子里,有3A3种方法
总的有上述三部列的式子乘起来=600种
请指教!!小弟感激不尽!

第一题中你重复了,假设你选出的是A球,最后它和B球同在1号箱子里;若你选出的是B球,它和A球还有可能同时出现在1号箱子里,这是一种情况,可是你算了2次,所以你最后的结果要除以2才对。
第二题中还是重复的问题,在5C1*4C1*3C3中,你先在5个球中选出A球,再在4个球中选出B球;也可以先在5个球中选出B球,再选出A球,这是相同的分法,可是却被看成2种分法,所以要除以2。对于5C1*4C2*2C2也是同样的情况,你先选出的A、B个球,剩下C、D个球,你也可以先选出C、D2个球,剩下A、B球,这是同一种情况.,所以需要除以2。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2011-05-29
假设哲个球是12345,当从5个中选1时,其他按顺序放在4个盒子里,12就在一个盒子里,当你选2时,其他四方个还按顺序,那就是21在一个盒子里有重复。

和上题一样,第一次选1,第二次选2剩下3个一起,和第一次选2第二次选1剩下3个一起,重复,所以除2A2
第2个回答  2011-05-29
两道题都是你的顺序出现了问题。第一题你的答案是标准答案的2倍就是因为你没除以2A2,所以第二题除以2A2你也没懂。是这样的,比如有两个球,你把一号先放进去再放二号,和你把二号先放进去再放一号结果都是一样的,但是次序不一样,这就多了一种方法,要把这种方法除去,就除以2A2,也就是除以2,这样你明白了吗
相似回答