一个细胞内信号蛋白如何放大信号继电器它前进,因为它吗?

如题所述

可以将细胞内的信号转导与电子计算机作比较。那些起着细胞内信号转导通路作用的分子可以视作为细胞内集成电路的分子转换器(开关),它们放电时就与适当的信号接受器相连接。想象一下吧,尽管有些差异,电子计算机的操作过程与细胞内信号转导事件何其相似乃而!二者都有信息的定向流动;二者都有编纂过的语言,并通过它们将信息加以译释;二者又都有一套套的反应系统,通过这些反应就可以对它们所接受到的输入信号作出响应。当然,有生命的细胞比之电子计算机要高明得多。设想一下,在任何时刻,会有多少不同的细胞外刺激同时施加于细胞之上!它们驱动了多少细胞内信号转导通路!但是,在细胞内,所有这些信号通路都有严密的协调关系。显然,细胞内信号转导是一个有严密组织的,并且是高度网络的过程。

 一 作用于细胞的信号
生物细胞所接受的信号有多种多样,从这些信号的自然性质来说,可以分为物理信号、化学信号和生物学信号等几大类,它们包括光、热、紫外线、X-射线、离子、过氧化氢、不稳定的氧化还原化学物质、生长因子、分化因子、神经递质和激素等等。在这些信号中,最经常、最普遍、最广泛的信号应该说是化学信号。这些化学信号可以分为三类。
1,内分泌系统的激素
内分泌系统将来自环境的信号传达到生物体内的各种器官和细胞,在整体上起着综合调节生物体功能的作用。它产生的化学信号是激素。内分泌系统的细胞产生的激素释放到血液中,经过血流的运送到达靶细胞而发挥特别的作用。这样的传递方式叫内分泌作用。可见,这种方式有几个特点:A,低浓度--激素在血流中的浓度被稀释到只有10-8到10-10M。但是它依然能够起作用,而且低浓度对它们安全地发挥作用也是必须的;B,全身性--即激素随血流而扩散到全身,但是,只被有它的受体的细胞接纳和发挥作用;C,长时效--激素产生后经过漫长的运送过程才起作用;而且血流中微量的激素就足以维持长久的作用。
2,神经系统的神经递质
在神经系统中,神经细胞与其靶细胞之间形成一个叫突触的有限结构。突触是神经细胞胞体的延伸部分,神经细胞产生的神经递质在突触的终端释放出来。突触后膜上有特殊的受体,突触前面的细胞也有受体,以调节神经递质的释放。可见,这种方式有作用时间短、作用距离短和神经递质浓度很高等特点。
3,生长因子和细胞因子等的旁分泌系统或者自分泌系统
近年发现有一个介于上述二者之间的中间型方式,即某些细胞产生并分泌出细胞生命活动必需的生理活性物质,这些物质通过细胞外液的介导而作用于其产生细胞的邻近细胞。当这些物质作用于异种细胞时,叫旁分泌作用;作用于同种细胞时,叫自分泌作用。这样的信号分子起着局部的化学调节剂作用。

二 信号的归宿
从各种信号刺激所导致的细胞行为变化来说,信号的分类以及信号的最终归宿是:(1)细胞代谢信号--它们使细胞摄人并代谢营养物质,提供细胞生命活动所需要的能量;(2)细胞分裂信号--它们使与DNA复制相关的基因表达,调节细胞周期,使细胞进入分裂和增殖阶段;(3)细胞分化信号--它们使细胞内的遗传程序有选择地表达,从而使细胞最终不可逆地分化成为有特定功能的成熟细胞;(4)细胞功能信号--比如,使肌肉细胞收缩或者舒张,使细胞释放神经递质或化学介质等,使细胞能够进行正常的代谢活动,处于细胞骨架的形成等等;(5)细胞死亡信号--这是细胞一生中发出的最悲壮、最惨烈的信号。这类信号一旦发出,为了维护多细胞生物的整体利益,为了维护生物种系的最高利益,就在局部范围内和一定数量上发生细胞的利他性自杀死亡!

三 构成信号转导系统的要素
构成信号转导系统的各种要素必须具有识别进入信号、对信号作出响应并发挥其生物学功能的作用,它们的任务象接力赛的传棒手更要多得多,即不仅仅是将棒接过来,传下去就完事,还需要具有识别、筛选、变换、集合、放大、传递、发散、调节信号的全套功能。这些功能不是仅靠个别蛋白质就能够完成的,需要有一个体系,由一些蛋白质协同地进行操作。这个细胞内的信号转导系统应当包含信号转导最必需的关键组分,它们有:(1)接受细胞外刺激并将它们转换成细胞内信号的成分;(2)有序地激活一个或者有限几个"唱主调"的信号转导通路,以译释细胞内的信号;(3)使细胞能够对信号产生响应,并作出功能上或发育上的决定(如基因转录,DNA复制和能量代谢等)的有效方法;(4)将细胞一生所作出的所有决定加以联网的方法,这样,细胞才能对在任何特定时刻作用于它的、种类繁多的信号作出协同响应。下面简要叙述其中最重要的某些要素。

(一) 受体
受体无疑是这个系统中最重要的一员,细胞是通过它表面的相应受体接受来自其外界环境的细胞因子和生长因子信号的。正是它,首先识别和接受外来信号,启动了整个信号转导过程。
1 膜受体
这类受体存在于细胞膜上,通常由与配体相互作用的细胞外域、将受体固定在细胞膜上的跨膜域和起传递信号作用的细胞内域三部分构成。这些受体通常是跨膜的蛋白质。其主要种类有4种。(1) 本身具有酪氨酸激酶活性的受体酪氨酸激酶(RTK)家族,在与配体结合后会发生寡聚作用,并据以调节激酶活性的受体。属于这一类的有多肽型的生长因子受体。(2) 本身没有酪氨酸激酶活性,但是通常与某些细胞内的酪氨酸激酶结合在一起,或者在与配体结合后能够罗致细胞内的酪氨酸激酶,从而启动细胞内信号转导的受体。它们主要是细胞因子的受体。与配体相互作用后也会发生二聚作用。(3) 能够激活G蛋白(一种与鸟苷三磷酸结合的膜蛋白质),能够在细胞内产生第二信使并据以改变其他酶活性的受体。已经知道的第二信使有cAMP,Ca++,IP3(肌醇1,4,5-三磷酸),DAG(二酯酰甘油)等。改变第二信使的含量的化学信号可以分为促进cAMP生成,抑制cAMP生成和与Ca++,IP3,DG有关的三类。G蛋白介导的信号转导反应是一种慢速的过程,经历时间长,但是敏感性高,灵活性大,花样更多;(4) 由几个具有2,4或5个跨膜域的亚基集合而成的,形成离子通道的受体。它们与信号结合后就可以对离子的流入或流出细胞进行调节。离子通道型受体介导的信号转导反应是一种快速的反应,配体与受体结合,就打开了通道,如同闸门被打开一样,离子就通过细胞膜而流动
2 细胞内受体
与上述几种膜受体不同,甾体激素等的受体是细胞内受体,它或者在细胞质中,或者在细胞核中。如上所述,甾体类物质是脂溶性的,它们能够通过细胞膜,直接进入细胞内;也可以借助于某些载体蛋白,进入细胞内。在细胞内,它们与相关受体结合,并直接作用于靶分子。

(二) 蛋白质激酶
蛋白质激酶是一类磷酸转移酶,其作用是将 ATP 的 g 磷酸基转移到它们的底物上特定氨基酸残基上去。依据这些氨基酸残基的特异性,将这些激酶分为4类。其中主要的两类是蛋白质丝氨酸/苏氨酸激酶(STK),和蛋白质酪氨酸激酶(PTK)。
1 蛋白质酪氨酸激酶
蛋白质酪氨酸激酶亚组是蛋白质激酶家族中一个最重要的蛋白质家族,它们至少有10个结构变种。把它们归为一个亚组依据的是它们的激酶结构域的特异性,而正是这些结构域使它们能够识别专一底物中的酪氨酸残基。这个功能域强大的生理催化活性可以满足范围很广的生理要求,包括转导细胞外的生长和分化刺激,和细胞对胞内氧化还原势的响应等等功能。这个家族的成员都由传递感觉的、起调节作用的和起效应作用的三种结构域组成。这类激酶又可以分为两种:受体型酪氨酸激酶或RTK和非受体型的蛋白质酪氨酸激酶。
SH2域是酪氨酸激酶的特殊的功能域。SH2指与SRC同源的2域,是无催化功能的蛋白质组件,其大小约100个氨基酸残基。SH2域的功能是专一地结合含有磷酸酪氨酸残基的模体。因此,SH2域与存在于各种各样的细胞内信号转导蛋白上的磷酸酪氨酸残基结合。这种结合有很高的亲和力,还有很大程度的序列专一性,即总是结合在紧挨着蛋白质的N-末端和紧挨着C-末端的磷酸酪氨酸。这种专一性来自于SH2域对磷酸酪氨酸残基周围的氨基酸的识别,尤其是磷酸酪氨酸残基C-端的4个氨基酸内的氨基酸残基对底物的专一性特别重要。还需要指出的是,含有SH2域的不同的分子可以结合在同一个受体的不同位点上;而同一个含SH2域的分子可以因为响应各种不同的生长因子或者细胞因子而被激活。
2 丝氨酸/苏氨酸磷酸化激酶
除了蛋白质酪氨酸激酶外,在信号转导中起着重要作用的是丝氨酸/苏氨酸磷酸化激酶。它也有许多种类。最常见的如Raf-1,是已知的许多激活MAPKK的细胞激酶之一,在细胞对刺激产生增殖响应的ras信号转导通路中起着关键作用。
3 其他激酶
还有一些激酶,虽然不能在整个信号转导通路起核心作用,但是,它们在第二信使的生成等方面是必不可少的,因此,也是信号转导通路不可缺少的成分。它们的代表有磷脂酰肌醇-3激酶(PI3-K)。PI3-K是一个由催化亚基(p110)和连接亚基(p85)组成的酶,它将磷脂酰肌醇、磷脂酰肌醇-4-磷酸〔PI(4)P〕 或磷脂酰肌醇-4,5-二磷酸〔PI(4,5)P2〕上的D-3位点磷酸化,分别产生PI(3)P、PI(3,4)P2和PI(3,4,5)P3。

(三) 将信号转变和放大的G蛋白
配体与受体结合后,需要通过一类叫做传达器或者转换器的调节蛋白的介导才进一步激活过程。起着转换器作用的蛋白质是与GTP结合的蛋白质(G蛋白)。 G蛋白有两种构象:与GTP结合时的激活态和GDP结合时的钝化态。通常情况下,绝大多数G蛋白是与GDP结合的钝化型。与GDP结合的G蛋白能与各种各样的受体相互作用,这种相互作用增加了受体与配体的结合亲和力。一旦受体与配体结合,受体被激活,G蛋白就从与GDP结合的钝化型转为与GTP结合的激活型。被激活的G蛋白与效应蛋白相互作用,改变第二信使的浓度,从而发生信号转导响应。如此这般,配体与受体短短几毫秒时间的接触可以延长为几十秒,乃至更厂时间的反应,使输入的信号可以被大大地放大。

(四) 细胞内的第二信使
第二信使是指受体被激活后在细胞内产生的介导信号转导通路的活性物质。细胞内的第二信使可以激活各种各样,专一的蛋白质磷酸化酶。它们有的将功能的蛋白质的丝氨酸和和苏氨酸残基磷酸化,有的将底物磷酸化。已经发现的第二信使有许多种,其最重要的有: cAMP,钙离子和AG等。。
1 cAMP
cAMP是最早确定的第二信使,它的作用是激活依赖cAMP的蛋白质磷酸化酶(PKA)。 组成PKA的有催化亚基(C亚基)和调节亚基(R亚基)两种亚基。通常它以两个C亚基和两个R亚基形成四聚体方式存在。这样的全酶是没有活性的。当每个R亚基与2个cAMP结合后,2个具有激酶活性的C亚基就作为单体解离出来。这样的C亚基可以将许多底物的丝氨酸和苏氨酸残基磷酸化。
2 钙离子
在处于静止期的细胞内,游离钙离子的浓度是10-8~10-7 M,保持在很低水平。而细胞外的钙离子浓度是10-3 M。这样,在细胞内外钙离子浓度存在有104~105倍的梯度。在信号刺激后,细胞内游离钙离子的浓度上升到10-6 M的水平。造成这种上升的原因是细胞内储存的钙离子被释放,以及细胞外的钙离子流入细胞。只有在细胞膜上的钙通道被打开,或者细胞被激活时,细胞内的钙离子浓度才会瞬时上升。细胞内的钙离子必须与蛋白质结合才能发挥作用。细胞内有各种各样的能够与钙离子结合的蛋白质,钙调蛋白被认为是与钙离子相互作用的主要蛋白质。每一个分子的钙调蛋白可以结合4个钙离子。一旦二者结合,就引起钙调蛋白构象的改变,从而影响钙调蛋白的功能。
3 磷脂酰肌醇(PI)应答(PI应答)
肌醇磷脂主要有三类:磷酸肌醇(PI),磷酸肌醇-4-磷酸(PIP)和磷酸肌醇-4,5-二磷酸(PIP2)。PIP,PIP2占全部磷脂质的1%不到。通过它们的代谢,在细胞膜附近的信号转导系统中起着重要作用。在接受化学信号后,磷脂酶C(PLC)激活,将PIP2水解,生成二酰甘油(DAG)和肌醇-1,4,5-三磷酸(IP3)。IP3与钙通道上的受体结合,将钙离子储存库中的钙离子释放到细胞质。IP2进一步代谢为IP4(肌醇-1,3,4,5-四磷酸),它作用于细胞膜,引起细胞外的钙离子流入细胞内,使得钙库中的钙离子浓度维持高水平。

总之,担负信号转导功能的信号转导系统可以一般化地概括为四个组分:检测器--信号的接受和检出,这是受体的主要任务;效应器--使信号产生最终的效果,比如腺苷酸环化酶或磷脂酶C等可以起到这种作用;转换器--控制着信号的时间和空间。比如G蛋白,它决定了GTP水解的速度,还决定了效应物的被激活时间。其结果不仅使输入的信号被大大地放大了,也起到信号计时器的作用;调谐器--它修饰信号转导通路的成员,如磷酸化。
温馨提示:答案为网友推荐,仅供参考
相似回答