求csc x的不定积分

如题所述

∫cscx dx

=∫1/sinx dx

=∫1/[2sin(x/2)cos(x/2)] dx,两倍角公式

=∫1/[sin(x/2)cos(x/2)] d(x/2)

=∫1/tan(x/2)*sec²(x/2) d(x/2)

=∫1/tan(x/2) d[tan(x/2)],注∫sec²(x/2)d(x/2)=tan(x/2)+C

=ln|tan(x/2)|+C。

扩展资料

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜