三极管工作原理,最好用形象的语言表达或者画出原理图说明

如题所述

光电三极管也称光敏三极管,它的电流受外部光照控制。是一种半导体光电器件。比光电二极管灵敏得多,光照集中电结附近区域。
利用雪崩倍增效应可获得具有内增益的半导体光电二极管(APD),而采用一般晶体管放大原理,可得到另一种具有电流内增益的光伏探测器,即光电三极管。它的普通双极晶体管十分相似,都是由两个十分靠近的p-n结-------发射结和集电结构成,并均具有电流发大作用。为了充分吸收光子,光电三极管则需要一个较大的受光面,所以,它的响应频率远低于光电二极管。[1]
2.1机构与工作原理
光电三极管是一种相当于在基极和集电极之间接有光电二极管的普通三极管,因此,结构与一般晶体管类似,但也有其特殊地方。如图2.1.1所示。图中e.b.c分别表示光电三极管的发射极.基极和集电极。正常工作时保证基极--集电极结(b—c结)为反偏正状态,并作为受光结(即基区为光照区)。光电三极管通常有npn和pnp型两种结构。常用的材料有硅和锗。例如用硅材料制作的npn结构有3DU型,pnp型有3GU型。采用硅的npn型光电三极管其暗电流比锗光电三极管小,且受温度变化影响小,所以得到了广泛应用。[2]
光电三极管的工作有两个过程,一是光电转换;二是光电流放大。光电转换过程是在集---基结内进行,它与一般光电二极管相同。[3]当集电极加上相对于发射极为正向电压而基极开路时(见图2.1.1(b)),则b--c结处于反向偏压状态。无光照时,由于热激发而产生的少数载流子,电子从基极进入集电极,空穴则从集电极移向基极,在外电路中有电流(即暗电流)流过。当光照射基区时,在该区产生电子---空穴对,光生电子在内电场作用下漂移到集电极,形成光电流,这一过程类似于光电二极管。于此同时,空穴则留在基区,使基极的电位升高,发射极便有大量电子经基极流向集电极,总的集电极电流为
IC=IP +βI P=(1+β)IP 2.1.1

图2.1.1光电三极管结构及工作原理

式中β为共发射极电流放大倍数。因此,光电三极管等效于一个光电二极管与一般晶体管基极---集电极结的并联。它是把基极---集电极光电二极管的电流(光电流IP)放大β倍的光伏探测器,可用图2.1.1(c)来表示。与一般晶体管不同的是集电极电流IC由基极---集电极结上产生的光电流IP=Ib控制。也就是说,集电结起双重作用,一是把光信号变成电信号起光电二极管的作用;二是将光电流放大,起一般晶体三极管的集电极的作用。[4]

2.2光电三极管的等效电路
根据光电三极管的工作原理,我们可以比较容易的画出他的等效电路。由于它的集电结势垒电容Ccb远小于发射结势垒电容Cbe,我们可以得到如图2.2.1光电三极管的交流等效电路,图中ip为集电结光电二极管的电流源,Cbe为发射结电容;rbe为发射结正向微分交流电阻;iLw为放大后的电流源;iL=βip;β为光电三极管的放大倍数;Rce为集电极发射极电阻;Cce为集电极发射极间电容;RL为负载电阻。由图5--40等效电路,

可以得到负载电阻两端的输出电压V0为
2.2.1
式中, , 为入射光信号的角频率,选择合适的负载,使得 ,则 ,输出电压为
2.2.2
由上式可看出,当输入光信号时,由于发射结电容相对较大,造成对信号的分流,将使有效输出信号减小。此外,电容 的旁路也会减少流过 的输出电流。利用光电三极管的等效电路在计算机和分析它的时间响应和输出外特性是非常方便的。[5]

2.3光电三极管的特性参数
2.3.1伏安特性
图2.3.1表示光电三极管的 关系曲线。由图可见,光电三极管在偏压为零时,集电流为零。当有光照时,光电三极管输出电流比同样光照下光电二极管的输出电流大 倍。图中曲线还表明,在光功率等间距增大的情况下,输出电流并不等间距增大,这是由于电流放大倍数 随信号光电流的增大而增大所引起的。

2.3.2频率响应
光电三极管的频率响应与 结的结构及外电路有关。通常需考虑:少数载流子对发射结和收集结势垒电容( 和 )的充放电时间;少数载流子渡越基区所需时间;少数载流子扫过收集势垒区的渡越时间;通过收集结到达收集区的电流流经收集区及外负载电阻产生的结压将,使收集结电荷量改变的时间常数。于是光电三极管总响应时间应为上述各个时间之和。因此,光电三极管的响应时间比光电二极管的要长的多。由于光电三极管广泛应用于各种光电控制系统,其输入光信号多为脉冲信号,即工作在大信号或开关状态,因而光电三极管的响应时间或响应频率将是光电三极管的重要参数。[6]
为改善光电三极管的响应频率,从光电三极管的等效电路可知道应尽可能减少 和 时间常数。一方面在工艺上设法减小结电容 . 等;另一方面要合理选择负载电阻 ,减小电路时间常数。图2.3.2给出了在不同负载电阻 下,光电三极管输出电压的相对值与入射光调制频率的关系。由图可知, 愈大,高频响应将愈差。减小 可以改善频率特性。但 降低会导致输出电压下降。因此,在实际使用时,合理选择 和利用高增益运算放大器作后级电压放大,可得到高的输出电压并改善频率响应。此外,为改善频率响应,减小体积,提高增益,电路上常采用高增益.低输入阻抗的运算放大器与之配合。图2.3.3(a)(b)分别表示达林顿光电晶体管的集成电路示意图。实际使用光电三极管时常采用带基极引线的光电三极管,并提供一定的基极电流。对无基极引线的光电三极管,则给予一定照度的背景光,使其工作于线性放大区,以得到较大的集电极电流,这将有利于提高光电三极管的频率响应。图2.3.4给出了光电三极管响应时间与集电极电流 的关系,由图可知,增加集电极电流 可减小光电三极管的响应时间,即提高光电三极管的工作频率。[7]

与光电二极管相比较,光电三极管频率响应较低,不宜使用于高速,宽带的光电探测系统中,但由于其响应率高,具有电流内增益,故在一般光电探测系统中仍得到广泛应用。

设计一个报警器。由图3.1(a)、(b)所示电路分别是红外发射器和红外接收、无线发射机的电路图。
图3.1(a)所示电路为红外发射器电路。由VT1、VT2、C1以及R1等组成一个300Hz左右的自激振荡器,其振荡器频率主要由时间常数R1 C1决定。红外发射二极管串接在VT2的集电极回路中,在振荡器振荡过程中VT2每导通一次,发光二极管发光一次。R3用于限流,使VT2的电流不超过500mA。

(a) 红外发射器

(b)红外接受无线发射机
图3.1 遮光式红外监控无线报警器电路
在图3.1(b)所示电路中,红外就收管VD3选用选用与发射管配套的管型(光波长一致)。VD3将照射的红外光转换成电信号,并经C2、R5加至IC1-a的反相输入端。IC1采用双运放TL072(或LM358、R4558、NE5532),其同相端外接6V骗子电压。该级的放大倍数K=20lg(R8/R5),图示参数给出近53dB的放大量。IC1-a的输出经VD4、C3等整流后,以直接电压形式加至IC1-b的反相输入端。IC1-b与R10、R12、RP1等组成一个电压比较器,当VD3一直受红外光照时,b点的电位Vb<Va(预先调好),IC1-b的输出端(⑦脚)呈高电平,VT3饱和导通,致使其集电极,(即IC2的④脚)呈低电平(<0.4V)。IC2与R15、R16、C4等组成一个可控多谐振荡级,当它的强制复位④脚呈低电平时,电路被强制复位,振荡中止。
当有人涉足红外监控区时,红外光束被遮断,IC1-a无信号输入,其输出呈低电平,则电源电压通过R9对C3充电,致使Vb>Va, IC1-b的⑦脚呈低电平,VT3截止,则IC2的④脚通过R14接电源,呈高电位,IC2起振。其振荡频率f=1.44/[( R15+2 R16)C4],图示参数的振荡频率约为1000Hz。
IC2输出的音频脉冲信号通过R17、C6加至VT4的基极。VT4与L、C9、C10等组成一个高频振荡器,其振荡频率主要取决于L、C9组成的选频回路,调节C9,使振荡频率在调频波段88-108MHz范围内。同时,该振荡级在输入脉冲信号的激励下呈调频振荡状态,这是由于VT4的集电结电容随调制脉冲的高低电平变化,进而实现调频。调频载波信号通过天线发射出去。

参考资料:百度一下

温馨提示:答案为网友推荐,仅供参考
第1个回答  2011-09-09
三极管从材料方面来看是NPN或PNP,有两个PN结,因此把三极管看成背靠背的两个二极管,“两个二极管”共同引脚为基极,其他一个引脚为集电极,另一个引脚为发射极。
以NPN三极管为例
工作原理:
正常工作在放大状态时,因为基极电压高于发射极,电路正偏,有大量电子流入发射极,形成Ie,电子原本要通过基极回到电源正极,但是发射机电子进入基极后,由于集电极电压比基极还要高,于是电子被集电极强烈的电场吸引,从而电子不走基极回到电源正极,而进入集电极到达电源正极形成集电极电流Ic,但是,基极中还是有空穴的(比较少),发射极电子被集电极电场吸引进入集电极过程中,一小部分电子与基极空穴复合形成基极电流Ib。这就是三级管电流走向。
放大原理:
因为基极空穴较少,所以发射极电子被集电极电场吸引进入集电极过程与基极空穴复合概率较小,当基极电流增大(空穴增多)时,因为电子与基极空穴复合概率较小,所以,基极电流稍微增大一点,就需要很多的电子才能与基极增多一点的空穴复合,因此,基极电流变化一点,而引起发射极电流发生较大的变动,从而实现了放大作用。
三极管是电流信号放大器件,只要给三极管周围接上适当电阻,就能把微电流信变化情况转变成电压变化情况。
第2个回答  2011-09-09
三极管有三钟工作状态 饱和 截止 放大 前两种状态时三极管用于开关 放大状态就是用基极电流去控制集电极电流来完成对基极电流的放大追问

能举例说明吗

追答

三极管原理

对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。

但三极管厉害的地方在于:它可以通过小电流控制大电流。

放大的原理就在于:通过小的交流输入,控制大的静态直流。

假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。

所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。

如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。

在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。

如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。

饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。

在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。

本回答被提问者采纳
第3个回答  2011-09-09
电子在电场下的漂移运动!
第4个回答  2011-09-10
“tangjin321”答的很好!
相似回答