曲线积分和曲面积分的几何意义是什么,和二重积分三重积分有什么区别。如果∫后的式子为1,分别表示面积

如题所述

二重积分,可以看做一个高函数f(x,y),在底面∑上的积分,所以他表示的是底面为∑的几何体的体积。。
三重积分,可以看做一个密度函数f(x,y),在几何体V上的积分,所以他表示的是几何体V的质量。。
第一类曲线积分,可以看做一个密度函数f,对曲线长度s的积分,所以他表示的是曲线s的质量。
第二类曲线积分,可以看做一个变力f,对曲线切向的积分,所以他表示的是变力f沿曲线做的功。
第一类曲面积分,可以看做一个密度函数f,对曲面面积S的积分,所以他表示的是曲面S的质量。
第二类曲面积分,可以看做一个磁场强度f,对曲面法向的积分,所以他表示的是的磁通量。物理上形象的说,就是通过某个曲面的磁感线条数。。。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-01-18
被积函数表示半径为3的上半球,积分区域为球的大圆,所以积分的几何意义为半径为3的半球的体积,根据球的体积公式可知的结果为:1/2
×
4/3π
×
3^3
=
18π
积分过程可用极坐标简化:
相似回答