高斯消元法的例子

如题所述

这个算法的原理是:
首先,要将L1 以下的等式中的x 消除,然后再将L2 以下的等式中的y 消除。这样可使整个方程组变成一个三角形似的格式。通常人或电脑在应用高斯消元法的时候,不会直接写出方程组的等式来消去未知数,反而会使用矩阵来计算。之后再将已得出的答案一个个地代入已被简化的等式中的未知数中,就可求出其余的答案了。
在刚才的例子中,我们将二分之三 L1和L2相加,就可以将L2 中的X消除了。然后再将L1 和L3相加,就可以将L3 中的x 消除。
高斯消元法可用来找出下列方程组的解或其解的限制:
2x + y - z = 8 (L1)
-3x - y + 2z = -11 (L2)
-2x + y + 2z = -3 (L3)
我们可以这样写:
L2 + 3/2 L1→ L2
L3 + L1 → L3
结果就是:
2x + y - z = 8
1/2 y + 1/2 z = 1
2y + z = 5
现在将 − 4L2 和L3 相加,就可将L3 中的y 消除:
L3 + -4 L2 → L3
其结果是:
2x + y - z = 8
1/2y + 1/2z = 1
-z = 1
这样就完成了整个算法的初步,一个三角形的格式(指:变量的格式而言,上例中的变量各为3,2,1个)出现了。
第二步,就是由尾至头地将已知的答案代入其他等式中的未知数。第一个答案就是:
z = -1
然后就可以将z 代入L2 中,立即就可得出第二个答案:
y = 3
之后,将z 和y 代入L1 之中,最后一个答案就出来了:
x = 2
就是这样,这个方程组就被高斯消元法解决了。
这种算法可以用来解决所有线性方程组。即使一个方程组不能被化为一个三角形的格式,高斯消元法仍可找出它的解。例如在第一步化简后,L2 及L3 中没有出现任何y ,没有三角形的格式,照着高斯消元法而产生的格式仍是一个行梯阵式。这情况之下,这个方程组会有超过一个解,当中会有至少一个变量作为答案。每当变量被锁定,就会出现一个解。
以下就是使用矩阵来计算的例子:
2 1 -1 8
-3 -1 2 -11
-2 1 2 -3
跟着以上的方法来运算,这个矩阵可以转变为以下的样子:
2 1 -1 8
0 1/2 1/2 1
0 0 -1 1
这矩阵叫做“行梯列式”。
最后,可以利用同样的算法产生以下的矩阵,便可把所得出的解或其限制简明地表示出来:
1 0 0 2
0 1 0 3
0 0 1 -1
最后这矩阵叫做“简化行梯列式”,亦是高斯-约当消元法指定的步骤。

温馨提示:答案为网友推荐,仅供参考
相似回答