要找到 ln(x + √(1 + x^2)) 的等价无穷小,我们可以使用极限运算和泰勒展开来近似。
首先,我们将函数 ln(x + √(1 + x^2)) 写成更简化的形式:
ln(x + √(1 + x^2)) = ln(x) + ln(1 + √(1 + x^2)/x)
接下来,我们考虑当 x 趋近于 0 时,√(1 + x^2)/x 的极限值。我们可以进行一些代数化简:
√(1 + x^2)/x = (1 + x^2)^(1/2)/x = [(1 + x^2)^(1/2) - 1 + 1]/x
利用泰勒展开,我们可以将 (1 + x^2)^(1/2) 在 x = 0 处展开成幂级数:
(1 + x^2)^(1/2) = 1 + (1/2)x^2 + O(x^4)
将上述展开式代入 √(1 + x^2)/x 的表达式中,得到:
√(1 + x^2)/x = [(1 + x^2)^(1/2) - 1 + 1]/x
= [(1/2)x^2 + O(x^4)]/x
= (1/2)x + O(x^3)
因此,当 x 趋近于 0 时,√(1 + x^2)/x 的等价无穷小是 (1/2)x。
现在,我们可以将 ln(x + √(1 + x^2)) 的等价无穷小写成更简洁的形式:
ln(x + √(1 + x^2)) = ln(x) + ln(1 + √(1 + x^2)/x)
= ln(x) + ln(1 + (1/2)x + O(x^2))
= ln(x) + (1/2)x + O(x^2)
因此,ln(x + √(1 + x^2)) 的等价无穷小是 (1/2)x。
温馨提示:答案为网友推荐,仅供参考