求懂化工英语的各路大侠们帮小女翻译一下吧…这是一化工论文 用翻译软件译的过不了呢 在这里谢谢大侠啦~~~~

High-Performance, Anode-Supported, Microtubular SOFC Prepared from Single-Step-Fabricated, Dual-Laye
Microtubular solid oxide fuel cells (SOFCs) have been developed in recent years mainly due to their high specific surface area and fast thermal cycling. Previously, the fabrication of microtubular SOFCs was achieved through multiple-step processes.
[ 1–3 ] A support layer, for example an anode support, is first prepared and presintered to provide mechanical strength to the fuel cell. The electrolyte layer is then deposited and sintered prior to the final coating of the cathode layer. Each step involves at least one high-temperature heat treatment, making the cell fabrication time-consuming and costly, with unstable control over cell quality. For a more economical fabrication of microtubular SOFCs with reliability and flexibility in quality control, an advanced dry-jet wet-extrusion technique, i.e., a phase inversion-based coextrusion process, was developed. Using this technique, an electrolyte/electrode (either anode or cathode) dual-layer hollow fiber (HF) can be formed in a single step. Generally, the electrolyte and electrode materials are separately mixed with solvent, polymer binder, and additives to form the outer and inner layer spinning suspensions, respectively, before being simultaneously coextruded through a triple-orifice spinneret,passing through an air gap and finally into a non-solvent external coagulation bath. In the mean time, a stream of nonsolvent internal coagulant is supplied through the central bore of the spinneret. The thickness of the two layers is largely determined by the design of the spinneret and can be adjusted by the corresponding extrusion rate, while the macrostructure or morphology of the prepared HF precursor can be controlled by
adjusting coextrusion parameters such as suspension viscosity,air gap, and flow rate of internal coagulant. The dual-layer HF precursor obtained is then co-sintered once at high temperature to remove the polymer binder and form a bounding between the ceramic materials. In previous work, [ 4–6 ] a dual-layer HF support for microtubular SOFCs, which consisted of an electrolyte outer layer of approximately 80 μm supported by an asymmetric anode inner layer with 35% fingerlike voids length,
was successfully fabricated using the coextrusion and cosintering process. A single cell that was obtained after deposition of a multilayer cathode onto the dual-layer HF produced the maximum power density of 0.59 W cm − 2 at 570 ° C. [ 6 ] Improvement to the structure of the dual-layer HFs was performed by reducing the electrolyte layer thickness to as thin as 10 μm and the maximum power density of the corresponding cell markedly increased to about 1.11 W cm − 2 at 600 ° C.
不要用翻译软件哦~~~~~~~~~~请懂化工英语的大仙帮忙啊~~~~~~~·

高性能、Anode-Supported,微管能从Single-Step-Fabricated SOFC准备,Dual-Laye
微管能固体氧化物燃料电池(SOFCs)近年来研究开发了主要是由于其高表面积和快速热循环。此前,伪造的微管能SOFCs是通过multiple-step流程。
[1 - 3]一个支持层,例如一个阳极的支持,首先是准备和presintered提供机械强度的燃料电池。电解液层然后放置和烧结优先于最终涂层的阴极层。每一步都涉及到至少一个高温热处理,使细胞制造耗时且昂贵,不稳定的控制细胞的质量。对于一个更经济SOFCs制备微管能与可靠性和适应性的质量控制,一个先进的dry-jet wet-extrusion技术,即,一个阶段inversion-based共流程,开发了。使用这种技术,电解液/电极(无论是阳极和阴极)双层中空纤维(HF)可以形成一个单一步骤。通常,电解质与电极材料分别混合溶剂、聚合物粘结剂、添加剂等因素形成的外层和内部层旋转停赛,分别之前,同时通过triple-orifice种吐丝器,穿过一个气隙,最后进入一个无外部凝固浴。同时,一连串的重点是提供内部混凝剂通过中央的圆孔喷。两层的厚度,很大程度上取决于所用的设计,还可以调整相应的挤出速率,而不当或形态的准备高频前体能够控制的
调整粘度等参数共暂停,气隙、流量的内部混凝剂。双层的高频前体然后co-sintered获得一旦在高温去除聚合物粘合剂和形式之间的边界陶瓷材料。在以往的研究中,[4 - 6]一个双层微管能SOFCs高频支持,其中包括电解质外层的大约80μm支持非对称阳极内部层状空隙长度35%,
成功地捏造使用共和cosintering过程。单个细胞获取的沉积后的多层阴极到双层高频功率密度产生最大的0.59 W厘米2°C−在570年[6]的改进结构的双层HFs是由减少电解液层厚度薄如10μm和最大功率密度相应的细胞显著增加到约1.11 W厘米2°C−在600年。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-05-22
呵呵,看你和我一个专业的,帮帮你,可能还有错误,你自己再改改吧。
关键词:高性能,阳极支持,微管的固体氧化物燃料电池 的单步制备,双层。
近年来,由于高比表面积和快速热循环的特点,微管的固体氧化物燃料电池(SOFC)的研究得到快速发展。此前,微管的固体氧化物燃料电池的制造是通过多步完成的。【1-3】首先需要一个支撑层,比如阳极支撑层,这能在烧结时为燃料电池提供所需的机械强度。然后使电解质层沉积,再进行烧结,最后添加阴极涂层。每一步都涉及至少一个高温热处理,使电池制造的耗时而且昂贵,还影响电池的质量。为了制造更经济,质量控制更可靠更灵活的微管固体氧化物燃料电池,开发了一种先进的干法喷射湿法挤压技术,该技术基于反相共挤工艺。使用这种技术,电解质/电极(阳极或阴极)的双层中空纤维(HF)可以只用一步形成。一般来说,电解质和电极材料分别与溶剂,聚合物粘结剂和添加剂混合形成内外两层交织的悬浮物,同时通过三重孔喷丝共挤技术,最终成非溶剂的外部凝固浴。同时,非溶剂内部混凝剂通过喷丝板的中央孔流动。内外两层的厚度主要取决于喷丝板的设计,并可以通过相应的挤出率调整。同时,双层中空纤维的宏观形貌可以通过共挤参数来调整,比如悬浮液的粘度,空气间隙,内部混凝剂流量。再将获得的形状固定的双层中空纤维在高温下进行一次烧结以除去聚合物粘结剂,并形成了陶瓷材料的边界。在以往研究中,[4-6] 采用共挤和共同烧结工艺,成功的用双层中空纤维支撑微管的固体氧化物燃料电池,其中包括约为80微米电解质外层,支持层内含35%指状空洞长度的不对称阳极内层。在570°C下,通过在双层中空纤维多层阴极沉积制成电池,产生的最大输出功率密度为0.59Wcm-2。[6]在600°C下,改进结构的双层中空纤维的电解质层厚度减少了10微米,而且相应的电池最大功率密度明显增大,大约1.11 Wcm-2。本回答被提问者采纳
相似回答
大家正在搜