数学的由来
“数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”, “可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre 也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”—词。
“数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。
首先,亚里士多德提出, “数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640?--546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼·拉尔修(Diogenes Laertius)简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯(Proclus)对欧几里得的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。以上这些可能有助于解释为什么在柏拉图的体系中,几乎没有爱奥尼亚的成份。赫拉克利特(公元前500--?年)有一段名言:“万物都在运动中,物无常往”, “人们不可能两次落进同一条河里”。这段名言使柏拉图迷惑了,但赫拉克赖脱却没受到柏拉图给予巴门尼德那样的尊敬。巴门尼德的实体论,从方法论的角度讲,比起赫拉克赖脱的变化论,更是毕达哥拉斯数学的强有力的竞争对手。
对于毕达哥拉斯学派来说,数学是一种“生活的方式”。事实上,从公元2世纪的拉丁作家格利乌斯(Gellius)和公元3世纪的希腊哲学家波菲利(Porphyry)以及公元4世纪的希腊哲学家扬布利科斯(Iamblichus)的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。 这里“数学家”仅仅表示一类成员,而并不是他们精通数学。毕达哥拉斯学派的精神经久不衰。对于那些被阿基米德神奇的发明所深深吸引的人来说,阿基米德是唯一的独特的数学家,从理论的地位讲,牛顿是一个数学家,尽管他也是半个物理学家,一般公众和新闻记者宁愿把爱因斯坦看作数学家,尽管他完全是物理学家。当罗吉尔·培根(Roger Bacon,1214--1292年)通过提倡接近科学的“实体论”,向他所在世纪提出挑战时,他正将科学放进了一个数学的大框架,尽管他在数学上的造诣是有限的,当笛卡儿(Descartes,1596--1650年)还很年轻时就决心有所创新,于是他确定了“数学万能论”的名称和概念。然后莱布尼茨引用了非常类似的概念,并将其变成了以后产生的“符号”逻辑的基础,而20世纪的“符号”逻辑变成了热门的数理逻辑。
在18世纪,数学史的先驱作家蒙托克莱(Montucla)说,他已听说了关于古希腊人首先称数学为“一般知识”,这一事实有两种解释:一种解释是,数学本身优于其它知识领域;而另一种解释是,作为一般知识性的学科,数学在修辞学,辩证法,语法和伦理学等等之前就结构完整了。蒙托克莱接受了第二种解释。他不同意第一种解释,因为在普罗克洛斯关于欧几里得的评注中,或在任何古代资料中,都没有发现适合这种解释的确证。然而19世纪的语源学家却倾向于第一种解释,而20世纪的古典学者却又偏向第二种解释。但我们发现这两种解释并不矛盾,即很早就有了数学且数学的优越性是无与伦比的。
我们在数学运算中经常使用的符号,如+,-,×,÷,=,>,<,()等,你知道它们都是谁首先使用,何时被人们所公认的吗?加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。另一乘号“·”是数学家赫锐奥特首创的。除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比。也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。十七世纪微积分创始人莱布尼兹广泛使用了这个符号,从此人们普遍使用。在(小)于号“>”,“<”,1631年为英国数学家赫锐奥特创用。括号“( )”,1591年法国数学家韦达开始使用括线,1629年格洛德开始使用括号。由此可见数学概念的产生及数学运算符号的最终形成都经历了一个漫长的演变过程,凝聚了学者们的聪明才智与对科学的不懈追求。
参考资料:http://kw.lyedu.com.cn/bbs/Announce/Announce.asp?BoardID=2&ID=10324