解ï¼å·²ç¥ï¼å边形ABCDæ¯æ£æ¹å½¢ï¼PAâ¥å¹³é¢ABCDï¼PA=ABï¼æ±äºé¢è§B-PC-Dãå¦ä¸å¾ã
å 为PAâ¥å¹³é¢ABCDï¼æ以ï¼å¹³é¢PABâ¥å¹³é¢ABCDï¼
åçå¹³é¢PADâ¥å¹³é¢ABCDãä¸PA=ABãé£ä¹ï¼∆PBCå∆PADé½æ¯çè °ç´è§ä¸è§å½¢ã设ï¼AB=a, åAB=BC=CD=DA=PA=a.PB=PD=BD=â2a, PC=â3a.
å¼è¾ å©çº¿BEâ¥PC交PCäºEï¼èç»DEï¼å 为∆BCEâ∆DCEâ½∆PBCï¼
æ以PC/BC=PB/BE, BE=BC*PB/PC=a*â2a/â3a=â2a/â3ï¼
æ ¹æ®ä½å¼¦å®çï¼2a^2=2*(2/3)a^2-2(2/3)a^2cos(B-PC-D);
cos(B-PC-D)=(4/3-2)/(4/3)=-(1/2)=cos(180º-60º)=cos120º
æ以äºé¢è§B-PC-D=120º.