草酰乙酸为什么不能直接进入线粒体

如题所述

因为线粒体内膜上缺乏相应的转运蛋白。

然后草酰乙酸跨内膜转运一般有以下几种我简单说一下:

1、苹果酸-天冬氨酸穿梭途径中,草酰乙酸脱氢形成苹果酸进入线粒体基质侧,或转氨形成天冬氨酸从基质侧进入溶胶。

2、三羧酸转运体系,也就是柠檬酸-苹果酸-丙酮酸穿梭途径,草酰乙酸形成苹果酸或进一步形成丙酮酸进入线粒体基质侧,或同乙酰辅酶a合成柠檬酸进入胞质溶胶。

3、乙醛酸循环里草酰乙酸还可以通过多步反应形成琥珀酸进入线粒体,又通过柠檬酸循环形成草酰乙酸。

三羧酸循环的一个环节。是在苹果酸脱氢酶的催化下由苹果酸生成的,它与乙酰辅酶A缩合生成柠檬酸,开始新的循环。在丙酮酸羧化酶的作用下,由丙酮酸与CO2生成,另外,也在转氨酶(EC 2.6.1.1)的作用下由天冬氨酸生成。已知也可作为琥珀酸脱氢酶的抑制剂。

扩展资料:

草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。

作为α-酮酸,其酮基碳可受亲核进攻,例如:草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;作为β-酮酸,草酰乙酸稳定性不强,易脱羧。

例子有:苹果酸在苹果酸酶催化下经过草酰乙酸,发生氧化脱羧生成丙酮酸;糖异生中,草酰乙酸在磷酸烯醇式丙酮酸羧化激酶作用下转变为磷酸烯醇式丙酮酸。

线粒体的化学组分主要包括水、蛋白质和脂质,此外还含有少量的辅酶等小分子及核酸。蛋白质占线粒体干重的65-70%。线粒体中的蛋白质既有可溶的也有不溶的。可溶的蛋白质主要是位于线粒体基质的酶和膜的外周蛋白;不溶的蛋白质构成膜的本体,其中一部分是镶嵌蛋白,也有一些是酶。

线粒体中脂类主要分布在两层膜中,占干重的20-30%。在线粒体中的磷脂占总脂质的3/4以上。同种生物不同组织线粒体膜中磷脂的量相对稳定。含丰富的心磷脂和较少的胆固醇是线粒体在组成上与细胞其他膜结构的明显差别。

参考资料来源:百度百科——草酰乙酸

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-10-05
由丙酮酸激酶催化的逆反应是由两步反应来完成的.
  首先由丙酮酸羧化酶催化,将丙酮酸转变为草酰乙酸,然后再由磷酸烯醇式丙酮酸羧激酶催化,由草酰乙酸生成磷酸烯醇式丙酮酸.
  这个过程中消耗两个高能键(一个来自ATP,另一个来自GTP),而由磷酸烯醇式丙酮酸分解为丙酮酸只生成1个ATP.
  由于丙酮酸羧化酶仅存在于线粒体内,胞液中的丙酮酸必须进入线粒体,才能羧化生成草酰乙酸,而磷酸烯醇式丙酮酸羧激酶在线粒体和胞液中都存在,因此草酰乙酸可在线粒体中直接转变为磷酸烯醇式丙酮酸再进入胞液中,也可在胞液中被转变为磷酸烯醇式丙酮酸.但是,草酰乙酸不能通过线粒体膜,其进入胞液可通过两种方式将其转运:一种是经苹果酸脱氢酶作用,将其还原成苹果酸,然后通过线粒体膜进入胞液,再由胞液中NAD+-苹果酸脱氢酶将苹果酸脱氢氧化为草酰乙酸而进入糖异生反应途径,由此可见,以苹果酸代替草酰乙酸透过线粒体膜不仅解决了糖异生所需要的碳单位,同时又从线粒体内带出一对氢,以NADH+H+形成使1,3-二磷酸甘油酸生成3磷酸甘油醛,从而保证了糖异生顺利进行.另一种方式是经谷草转氨酶的作用,生成天门冬氨酸后再逸出线粒体,进入胞液中的天门冬氨酸再经胞液中谷草转氨酶催化而恢复生成草酰乙酰.有实验表明,以丙酮酸或能转变为丙酮酸的某些成糖氨基酸作为原料成糖时,以苹果酸通过线粒体方式进行糖异生,而乳糖进行糖异生反应时,它在胞液中变成丙酮酸时已脱氢生成NADH+H+,可供利用,故常在线粒体内生成草酰乙酸后,再变成天门冬氨酸而出线粒体内膜进入胞浆.本回答被提问者和网友采纳
第2个回答  2018-10-23
直接回答你的问题就是线粒体内膜上缺乏相应的转运蛋白。
然后草酰乙酸跨内膜转运一般有以下几种我简单说一下:
1.苹果酸-天冬氨酸穿梭途径中,草酰乙酸脱氢形成苹果酸进入线粒体基质侧,或转氨形成天冬氨酸从基质侧进入溶胶。
2.三羧酸转运体系,也就是柠檬酸-苹果酸-丙酮酸穿梭途径,草酰乙酸形成苹果酸或进一步形成丙酮酸进入线粒体基质侧,或同乙酰辅酶a合成柠檬酸进入胞质溶胶。
3.乙醛酸循环里草酰乙酸还可以通过多步反应形成琥珀酸进入线粒体,又通过柠檬酸循环形成草酰乙酸。
相似回答