圆的半径决定圆的大小。
半径的定义:
在古典几何中,圆或圆的半径是从其中心到其周边的任何线段,并且在更现代的使用中,它也是其中任何一个的长度。这个名字来自拉丁半径,意思是射线,也是一个战车的轮辐。
半径的复数可以是半径(拉丁文复数)或常规英文复数半径。半径的典型缩写和数学变量名称为r。通过延伸,直径d定义为半径的两倍:d=2r。
圆的半径的简介:
如果物体没有中心,则该术语可能指其周长,其外接圆的半径或外接球体。在任一情况下,半径可以大于直径的一半,通常将其定义为图中任何两个点之间的最大距离。几何图形的半径通常是其中包含的最大圆或球的半径。环,管或其他中空物体的内半径是其空腔的半径。
对于常规多边形,半径与其周长相同。正多边形的内半径也称为心距。在图论中,图的半径是从u到图的任何其他顶点的最大距离的所有顶点u的最小值。
半径在坐标系中的使用:
1、极坐标
极坐标系是二维坐标系,其中平面上的每个点由固定点的距离和与固定方向的角度确定。固定点(类似于笛卡尔系统的原点)被称为极点,固定方向的极点的射线是极坐标轴。距离极点的距离称为径向坐标或半径,角度为角坐标,极角或方位角。
2、圆柱坐标
在圆柱坐标系中,有一个选择的参考轴和垂直于该轴的选定的参考平面。系统的起点是所有三个坐标可以给出为零的点。这是参考平面和轴之间的交点。轴被不同地称为圆柱形或纵向轴线,以便将其与位于参考平面中的射线(从原点开始并指向参考方向)区分开。
与轴的距离可以称为径向距离或半径,而角坐标有时称为角位置或方位角。半径和方位角共同称为极坐标,因为它们对应于平面中平行于参考平面的平面中的二维极坐标系。第三个坐标可以称为高度或高度(如果参考平面被认为是水平的),纵向位置或轴向位置。