园周率怎么计算出来的

如题所述

圆周率的计算从古至今有不同的算法,具体如下:

1、阿基米德算法

古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。

阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。

他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。

2、中国数学家刘徽割圆术

公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。

刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率3927/1250=3.1416。

3、祖冲之算法

公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值密率。

在之后的800年里祖冲之计算出的π值都是最准确的。其中的密率在西方直到1573年才由德国人奥托(Valentinus Otho)得到,1625年发表于荷兰工程师安托尼斯(Metius)的著作中,欧洲称之为Metius' number。

4、卡西、鲁道夫、梅钦、Jurij Vega、弗格森、伦奇不断精确圆周率

阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。

德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

英国数学家梅钦(John Machin)提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:

其中arctan x可由泰勒级数算出。类似方法称为“梅钦类公式”。

斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了梅钦于1706年提出的数式。

到1948年英国的弗格森(D. F. Ferguson)和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。

5、现代计算机技术计算圆周率

2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。

参考资料来源:百度百科-圆周率

温馨提示:答案为网友推荐,仅供参考
第1个回答  2016-12-29
3.14159265358979323846264338327950488
π=4∑(k=0,..∞)(-1)^k/(2k+1)
圆周率即圆的周长与其直径之间的比率。关于它的计算问题,历来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即 )的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长(参见图1-5-1),其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手(参见图1-5-2)得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。(参见图1-5-3)。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为3.14和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。
以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率为:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的, 比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.,其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。
第2个回答  2017-10-28
生活中遇见过只是猜想而已,毕竟数学也是发明的发现的
相似回答