参照定理:对于每个矩阵A,fA都是一个线性映射,同时,对每个的 线性映射f,都存在矩阵A使得 f= fA。也就是说,映射是一个同构映射。所以一个矩阵 A的秩还可定义为fA的像的维度(像与核的讨论参见线性映射)。
矩阵 A称为 fA的变换矩阵。这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。秩还可以定义为 n减 f的核的维度;秩-零化度定理声称它等于 f的像的维度。
秩线性映射的推广:
只有零矩阵有秩 0 A的秩最大为 min(m,n) f是单射,当且仅当 A有秩 n(在这种情况下,我们称 A有“满列秩”)。f是满射,当且仅当 A有秩 m(在这种情况下,我们称 A有“满行秩”)。在方块矩阵A(就是 m= n) 的情况下,则 A是可逆的,当且仅当 A有秩 n(也就是 A有满秩)。
如果 B是任何 n× k矩阵,则 AB的秩最大为 A的秩和 B的秩的小者。即:秩(AB)≤min(秩(A),秩(B)) 推广到若干个矩阵的情况,就是:秩(A1A2...Am)≤min(秩(A1),秩(A2)。
秩(Am)) 证明:考虑矩阵的秩的线性映射的定义,令A、B对应的线性映射分别为 f和 g,则秩(AB)表示复合映射 f·g,它的象 Im f·g是 g的像 Im g在映射 f作用下的象。
参考资料:百度百科—秩
这个矩阵是零矩阵时,矩阵的秩为0;
这个矩阵是非零矩阵且每行成比例时,或者矩阵是只有一行或者只有一列时,矩阵的秩为1。
矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
扩展资料:
矩阵的秩的性质:
1、转置后秩不变;
2、r(A)<=min(m,n),A是m*n型矩阵;
3、r(kA)=r(A),k不等于0;
4、r(A)=0 <=> A=0;
5、r(A+B)<=r(A)+r(B);
6、r(AB)<=min(r(A),r(B));
7、r(A)+r(B)-n<=r(AB)。