对角矩阵求法

2 0 1
3 1 3
4 0 5求他的对角矩阵并判断他们是否相似

求对角矩阵的方法:求出一个矩阵的全部互异的特征值a1。a2。对每个特特征值,求特征矩阵a1I-A的秩。当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系。

对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。

推论:

若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。

说明:当A的特征方程有重根时.就不一定有n个线性无关的特征向量,从而未必能对角化。

只有对角线上有非0元素的矩阵称为对角矩阵,或说若一个方阵除了主对角线上的元素外,其余元素都等于零,则称之为对角阵。

主对角线上方元素都为零的方阵,称为下三角阵。

对角阵既是上三角阵,又是下三角阵。

矩阵的对角线有许多性质,如做转置运算时对角线元素不变、相似变换时对角线的和(称为矩阵的迹)不变等。在研究矩阵时,很多时候需要将矩阵的对角线上的元素提取出来形成一个列向量,而有时又需要用一个向量构造一个对角阵。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-01-06
|λ-2 0 -1 |
|-3 λ-1 -3|=﹙λ-1﹚²﹙λ-6﹚
|-4 0 λ-5|
λ=1时
|-1 0 -1|
|-3 0 -3|
|-4 0 -4|的秩=1
相应的齐次方程组有两个线性无关的解,即λ=1有两个线性无关的特征向量
所以原矩阵A与对角矩阵相似。即有可逆矩阵P 使.P^﹙-1﹚AP=diag﹙1,1,6﹚本回答被提问者采纳
相似回答