å 为ç¸é»ä¸¤é¡¹ä¹å·®ä¸ºçå·®æ°å
差为3,5,7,9â¦â¦
æ以é项å
¬å¼ä¸ºbn=2n-1
æ以an=an-1+(2n-1) (n>1)
=an-1+(2(n-1)+1)
=an-2+(2(n-2)+1)+(2(n-1)+1)
=...
=a1+(2*1+1)+...+(2(n-1)+1)
=a1+(2(1+2+...+(n-1))+(n-1))
=a1+n(n-1)+(n-1)
=a1+n^2-1
=6+n^2-1
=5+n^2
Sn=1^2+5+2^2+5+â¦â¦+n^2+5
=1^2+2^2+â¦â¦+n^2+5n
å 为(1^2+2^2+...+n^2)=n(n+1)[(2n+1)/6
=n(n+1)[(2n+1)/6+5n
追é®ä¸åºè¯¥æ¯
3ï¼5ï¼7ï¼9â¦â¦
a1=3ï¼d=2
代å
¥Sn=a1·n+nï¼n-1ï¼d/2
ç®å¾Sn=n²+2nä¹
追çæä¸ç¥éé¢ç®ä¸çå®æ¯æä»ä¹
å¦ææ¯åé¢çæ°åå°±æ¯æåç
å¦ææ¯åé¢çå·®çé£ä¸ªæ°åï¼å°±æ¯ä½ åç