用极坐标表示的复数怎么进行加减乘除运算?

如题所述

复数可以分为实部和虚部,记为a+ib,在直角坐标系中,横轴代表实数,纵轴代表虚数,以A(a,b)代表实数A=a+ib。

极坐标系中,以原点作为始点,A(a,b)作为终点的矢量代表该虚数,用A(r,θ)表示,其中r=(a平方+b平方)的开二次方,θ = arctg(b/a)。

极坐标:在平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。

极坐标系

是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人等领域。

在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2019-10-14

复数可以分为实部和虚部,记为a+ib,在直角坐标系中,横轴代表实数,纵轴代表虚数,以A(a,b)代表实数A=a+ib,在极坐标系中,以原点作为始点,A(a,b)作为终点的矢量代表该虚数,用A(r,θ)表示,其中r=(a平方+b平方)的开二次方,θ = arctg(b/a)。

1.极坐标:在平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标即为极坐标。

2.复数:复数x被定义为二元有序实数对(a,b) ,记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

本回答被网友采纳
第2个回答  2021-01-02

复数可以分为实部和虚部,记为a+ib,在直角坐标系中,横轴代表实数,纵轴代表虚数,以A(a,b)代表实数A=a+ib;

在极坐标系中,以原点作为始点,A(a,b)作为终点的矢量代表该虚数,用A(r,θ)表示,其中r=(a平方+b平方)的开二次方,θ = arctg(b/a)。

极坐标:在平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标即为极坐标。2.复数:复数x被定义为二元有序实数对(a,b) ,记为z=a+bi,这里a和b是实数,i是虚数单位。

扩展资料:

在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。

复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

本回答被网友采纳
第3个回答  2020-02-19
复数可以分为实部和虚部,记为a+ib,在直角坐标系中,横轴代表实数,纵轴代表虚数,以A(a,b)代表实数A=a+ib,在极坐标系中,以原点作为始点,A(a,b)作为终点的矢量代表该虚数,用A(r,θ)表示,其中r=(a平方+b平方)的开二次方,θ
=
arctg(b/a)。
1.极坐标:在平面内取一个定点O,
叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对
(ρ,θ)就叫点M的极坐标,这样建立的坐标即为极坐标。
2.复数:复数x被定义为二元有序实数对(a,b)
,记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
第4个回答  2020-04-07
乘:模相乘,角相加
除:模相除,角相减