岩石的年龄是怎么测定的?

如题所述

人们已经为地球的历史编出了详细的地质年代表。比如恐龙的最繁盛时代为距今约225百万年前的侏罗纪,灭绝于65百万年前的白垩纪末期,三叶虫的繁盛时期为距今约530百万年前的寒武纪,等等。这些动物生存的时代是怎么定出来的呢?地球的45亿年历史又是怎么定出来的呢?

地质学家和化学家们发现,当岩石或矿物在一次地质事件中形成时,放射性同位素以一定的形式进入岩石、矿物,之后便不断地衰减,随之蜕变成子体逐渐增加。所以,通过准确地测定岩石、矿物中放射性同位素母体和子体的含量,就可以根据放射性衰变定律计算出该岩石、矿物的地质年龄。这种年龄测定称做同位素计时或放射性计时。计时的基本原理就是天然放射性同位素的衰变规律。测定的地质事件或宇宙事件的年龄就是“同位素地质年龄”。

目前,在地学界应用的同位素测定方法比较多,不同的方法有不同的应用范围。比如,由于碳同位素的半衰期相对较短,行内图:/19787502148683010003_0042_0027.jpg" />

法可测的年龄一般不超过5万年,最大限度是7万年。因此凡是几万年以来曾经在地球生物圈、大气圈和水圈中生存过的含碳生物均可作为样品进行测定,包括动植物的残骸(如木头、木炭、果实、种子、兽皮、象牙等)、含同生有机质的沉积物(泥炭、淤泥等)和土壤、生物碳酸盐(贝壳、珊瑚等)和原生无机碳酸盐(石灰华、苏打、天然碱等)、含碳的古代文化遗物(纸、织物、陶瓷、铁器)等等。行内图:/19787502148683010003_0042_0028.jpg" />

法主要适用于考古学研究。

进行“同位素地质年龄”测定的岩石必须尽可能地“新鲜”,在有蚀变的岩石内,氩易丢失,所以测出的年代不准确,钾—氩法的最佳测定范围在10万年至10亿年之间,铷—锶法的最佳测定范围为1000万年至1亿之间年,所以这两种方法适用于中新生代地层的测定;铀—铅法的适应范围在1000万年至10亿年以上,铀—钕法也在2亿年以上,所以,这两种方法较适用于古生代或更古老地层时代的研究。

有了精确的同位素地质年龄,地质学家们就可以编制用来进行地层划分与对比的“地质年代表”了。

测定岩石年龄的仪器

早在1911年,年仅21岁的英国地质学家A·霍尔梅斯就提出了用矿物中铀—铅同位索的比值来测定地层年龄的设想。1937年,经过20多年的工作,他发表了世界上第一份具有数字年龄的地质年代表。

第二次世界大战结束后,欧美各国以及原苏联的地质学者加强了同位素地质年龄的研究力度。进入20世纪80年代以后,地质年代表发展得很快,目前在国际地学界有影响的地质年代表主要有下列几类。

PTS年表 这是一份“显生宙地质年表”,由英国伦敦地质学会于1964年提出,曾对国际地学界产生过相当大的影响。1976年在悉尼召开的第25届国际地质大会上,对此年代表进行了修改、补充和复算。

GTS年表 这是在PTS年表的基础上编制的,其中几位重要的研究人员在著名的石油公司任职,所以该年代表在石油、煤炭及天然气工业界有较大的影响。GTS年表最重要的特点在于它有时间年标和地层年标双重意义。前者以标准的天文时间“年”记时,后者以传统的地层时代单位代、纪、世等记时。二者构成了既有数字年龄、又能反映生物演化阶段、具有地质事件特征的统一地质年表。世界著名的科学家W.B.哈兰德是编制者之一。

NDS年表 该表诞生于20世纪80年代初期,它强调了放射性同位素年龄、全球化石对比和地磁极性年表的结合,使得该表的国际适用性更强。该表是在全球251个测量点、显生宙的71条界线实测年龄的基础上编制而成的。所以,NDS年表已成为现代地层研究人员必须了解的内容之一。

地质年代表

COSUNA年表表 国石油地质家协会(AAPG)在1976年第25届国际地质大会开过之后,积极开展了一项建立北美地层对比(COSUNA)计划。在这项工作中,尽量做到以海相标准化石为基础划分、对比地层,并配合同位素年龄数据,中国地质学家采用该表中前寒武纪地层界线。

此外,还有CGR年表(地质记录的年代学)等。

值得一提的是,迄今为止,绝大多数“同位素地质年龄”是从火成岩或火山凝灰岩中测定的,而地球上相当多的岩石是沉积岩,所以,这就造成了同位素地质年代学研究的局限性。对于地质学家,尤其是石油地质学家来说,对含有丰富石油与天然气的沉积岩的“同位素年龄”测定就成为一个极有挑战意义的课题。

温馨提示:答案为网友推荐,仅供参考
相似回答