一阶导数和二阶导数的区别是什么?

如题所述

一阶导数反映的是函数斜率,而二阶导数反映的是斜率变化的快慢,表现在函数的图像上就是函数的凹凸性。

f′′(x)>0,开口向上,函数为凹函数,f′′(x)<0,开口向下,函数为凸函数。

凸凹性的直观理解:

设函数y=f(x)在区间I上连续,如果函数的曲线位于其上任意一点的切线的上方,则称该曲线在区间I上是凹的;如果函数的曲线位于其上任意一点的切线的下方,则称该曲线在区间I上是凸的。

扩展资料

确定曲线y=f(x)的凹凸区间和拐点的步骤:

1、确定函数y=f(x)的定义域;

2、求出在二阶导数f"(x);

3、求出使二阶导数为零的点和使二阶导数不存在的

点;

4、判断或列表判断,确定出曲线凹凸区间和拐点。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜