矩阵的乘积怎么用初等变换化为初等矩阵?

如题所述

假设,N阶矩阵A和N阶矩阵B的乘积矩阵为C,即记作:C=A*B;其运算过程如下:

令A矩阵的第i行记作:ai,B矩阵第j列记作:bj,C矩阵第i行j列记作:cij

则cij=(ai1*b1j)+(ai2*b2j)+……+(ain*bnj);

(其中,ai1表示矩阵A的第i行第1列的元素的值,以此类推);

因此,那个M^2的矩阵第一行第一列的元素值为:

0*0+1*1+0*0+0*0=1,以此类推就得到那个结果了。

扩展资料:

离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一;

它是在1852年,由英国的一名绘图员弗南西斯·格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。

那么这能否从数学上进行证明呢?100多年后的1976年,肯尼斯·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用计算机辅助计算,用了1200个小时和100亿次的判断,终于证明了四色定理,轰动世界,这就是离散数学与计算机科学相互协作的结果。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜