两边夹定理

如题所述

夹逼定理:又称两边夹定理、夹逼准则、夹挤定理,是判定极限存在的两个准则之一,是函数极限的定理。

一、如果数列{Xn},{Yn}及{Zn}满足下列条件。

(1)当n>N0时,其中N0∈N*,有Yn≤Xn≤Zn。

(2){Yn}、{Zn}有相同的极限a,设-∞<a<+∞。

则,数列{Xn}的极限存在,且当n→+∞,limXn=a。

证明:因为limYn=a,limZn=a,所以根据数列极限的定义,对于任意给定的正数ε,存在正整数N1、N2,当n>N1时,有〡Yn-a∣﹤ε,当n>N2时,有∣Zn-a∣﹤ε,现在取N=max{No,N1,N2},则当n>N时,∣Yn-a∣<ε、∣Zn-a∣<ε同时成立,且Yn≤Xn≤Zn,即a-ε<Yn<a+ε,a-ε<Zn<a+ε,又因为a-ε<Yn≤Xn≤Zn<a+ε,即∣Xn-a∣<ε成立。也就是说limXn=a。

二、F(x)与G(x)在Xo连续且存在相同的极限A,即x→Xo时,limF(x)=limG(x)=A。

则若有函数f(x)在Xo的某邻域内恒有F(x)≤f(x)≤G(x)。

则当X趋近Xo,有limF(x)≤limf(x)≤limG(x),即A≤limf(x)≤A。故limf(Xo)=A。

简单的说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X,那么函数B的极限就一定是X,这个就是夹逼定理。

拉格朗日定理:

数论:

1.内容:四平方和定理(Lagrange's four-square theorem) 说明每个正整数均可表示为4个整数的平方和。它是费马多边形数定理和华林问题的特例。注意有些整数不可表示为3个整数的平方和,例如7。

2.历史:1743年,瑞士数学家欧拉发现了一个著名的恒等式:根据上述欧拉恒等式或四元数的概念可知如果正整数和能表示为4个整数的平方和,则其乘积也能表示为4个整数的平方和。于是为证明原命题只需证明每个素数可以表示成4个整数的平方和即可。

1751年,欧拉又得到了另一个一般的结果。即对任意奇素数,同余方程必有一组整数解满足,(引理一)。至此,证明四平方和定理所需的全部引理已经全部证明完毕。此后,拉格朗日和欧拉分别在1770年和1773年作出最后的证明。

温馨提示:答案为网友推荐,仅供参考
相似回答