电介质物理学的一般性质

如题所述

第1个回答  2016-05-28

电介质包括气态、液态和固态等范围广泛的物质。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化 :① 原子核外的电子云分布 产生畸变,从而产生不等于零的电偶极矩,称为畸变极化 ;②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移极化;③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。电介质极化时,电极化强度矢量P与总电场强度E的关系为P=ε0χeE,ε0为真空电容率,χe为电极化率,εr=1+χe称为相对电容率(见电极化强度 ,电极化率)。电极化率或电容率与外电场的频率有关。对静电场或极低频电场,上述3种极化类型都参与极化过程 ,一定电介质的电容率为常量。电场频率增加时,转向极化逐渐跟不上外电场的变化,电容率变为复数,虚部的出现标志着电场能量的损耗,称为介电损耗。频率进一步增加时,转向极化失去作用,电容率减小。在红外线波段,电介质正、负电中心的固有振动频率往往与外场频率一致,从而产生共振,表现为电介质对红外线的强烈吸收。在吸收区,电容率的实部和虚部均随频率发生大起大落的变化。在可见光波段,位移极化也失去作用,只有畸变极化起作用。光频区域的电容率实部进一步减小,它对应电介质的折射率,虚部决定了对光波的吸收。在强电场(如激光)作用下,极化强度 P 与电场强度E不再有线性关系 ,这使电介质表现出种种非线性效应(见非线性光学)。各向异性晶体的电容率不能简单地用一个数来表示,需用张量表示。
固态电介质分布很广而因具有许多可供利用的性质如电致伸缩、压电性、热电性和铁电性等,引起了广泛的研究,但过去多限于讨论它们的宏观性质。实际上,这些性质是与固体(晶体)内在结构、内部原子(离子)以及电子(主要指束缚电子)的运动密切相关的。现在,固态电介质物理与固体物理、晶体学和光学有着许多交叠的领域;特别是激光出现以后,研究电介质与激光的相互作用,又构成为固态激光光谱学、固态非线性光学和固态光学(固体光学性质)的重要内容。 离子晶体中点阵振动的光频波导致点阵的电极化;这类光频波和离子的位移极化所引起的介电性质和对光的红外吸收与喇曼散射以及一些特殊的光学性质,长期以来就是固体物理的研究对象;也属电介质物理和光学的研究范畴。碱卤晶体中的F 心以及与之相关的各种色心,人们从30年代起,就不断地进行研究,推动了固体物理的发展,对于固体发光、固体激光的发展也起着促进作用。近年来,研究色心激光并发展可调的红外色心激光器是很受重视的课题。为了研究F心,当初所提出关于离子晶体中电子自陷的极化子模型即运动电子和它周围畸变势的总体,现在已成为探讨离子性介电晶体和带有离子性(键)的半导体包括Ⅲ-Ⅴ族、Ⅱ-Ⅵ族半导体中电子过程的研究对象。这些也是电介质物理研究的范畴。
固体(晶体)中的电极化过程,实际上是点阵的集体运动。研究电极化的集体运动是固体元激发理论的一部分。极化子就是一种元激发(见固体中的元激发)。按固体元激发理论,固体的介电常数不仅是频率的函数,而且也是极化波矢 k的函数;后者称为空间色散。研究介电函数ε(ω,k)的规律与电极化元激发性质的关系又会使固态电介质物理发展到一个新阶段。
当前固态电介质物理的研究重点,还在于研究无机电介质材料的机电、电光和铁电等性质。 没有中心反演对称的一些带有离子性(键)的晶体,在电场作用下,内应力与外电场强度成正比,具有一阶的电致形变效应,这个效应显著。这些非中心对称的晶体称为压电晶体;它们在外界压力的作用下,通过内部的电极化过程,使晶体表面出现面电荷,这称为压电效应。压电晶体种类很多,最常见而用得广的有石英、罗谢耳盐、KDP、ADP、LiNbO3、LiTaO3等等。一些具闪锌矿结构的晶体,如GaAs、CuCl、ZnS、lnP等,它们是压电半导体。还有压电陶瓷如 PZT。石英晶体作为无线电频的振荡器,就利用了它的逆压电效应,特别是它的热胀系数很小,具有(机械)稳频作用,在电信上、电子技术上应用很广。罗谢耳盐用作为耳塞听筒或电唱头的材料,是由于它的压电性能强而制作较简易,ADP则是水声(声呐)的听音器的重要材料。现在应用最广的是压电陶瓷 PZT。研究压电晶片的切型及其振荡模式是40年代以来固体电介质物理的重要课题。压电方面的研究成果在技术上得到广泛的应用,促进了无线电技术、超声技术、水声技术的发展,在激光技术上也有重要应用。
透明的(包括红外透明但可见光区不透明的)压电晶体是电光晶体(具有一阶电光效应),它们的折射率可以通过外加电场而灵敏地改变,在激光调制上有重要的用途。KDP、 CuCl、GaAs等是重要的电光晶体。新型的电光晶体有铌酸锶钡(BSN)、铌酸钡钠(BNN)等。透明的压电陶瓷PLZT也是新型的电光材料。 介电晶体有很重要的一类,例如BaTiO3、SrTiO3、LiNbO3等,叫铁电体;在各自一定的特征温度(称为铁电的居里温度)之下,晶体中出现自发极化,并且自发极化可以随外电场反向而反向;在交变电场作用下,显示电滞回线。拿钛酸钡来说,它在120℃以上,没有自发极化,晶体结构属立方晶系。当温度降至120℃以下,晶体出现自发极化,与此同时,结构的对称性降低(如温度在5℃以上,则结构属正方系),出现电滞回线,晶体中形成电畴。自发极化的出现,总伴随着结构的变化,对称性的降低(对称性破缺),是一种相变过程。钛酸钡在120℃以上时,晶体中没有自发极化,是为顺电相。顺电相的钛酸钡具有反演对称中心,不是压电晶体。在120℃以下,铁电相的钛酸钡不具有反演对称中心,成为压电晶体、 电光晶体,也是热电晶体。室温下,TGS、LiNbO3也是铁电体。KDP、ADP在室温附近是压电晶体、电光晶体;但KDP在-150℃以下才是铁电体,ADP在-125℃以下是反铁电体。石英与GaAs和CuCl是压电晶体,但不是铁电体。铁电体必是压电体、热电体,如果对光透明的话,也就是电光晶体。BSN、BNN是铁电电光晶体而GaAs、CuCl则是压电电光晶体;前者的工作电压比后者低得多,在这一点上说,前者比后者优越。
研究铁电体的相变即研究自发极化发生的机理是固态电介质物理也是固体物理的主要课题。现在知道,晶体中自发极化的出现是与点阵振动的某一振动频率〔例如,横光频支(TO)的振动频率〕趋于零值(ωTO→0)有关的。频率趋于零值的振动模式叫做软模。这方面已发展成铁电软模理论。实际上,软模理论对一般固态相变例如合金相变问题也原则上适用。 通常研究电极化问题时,外加电场甚弱、极化强度与外场成正比,这是线性极化。当外场增强,就可能出现非线性极化。但只在非中心对称的压电晶体、铁电晶体中才能观测到二阶的非线性极化,所以,过去已常把压电、铁电材料称为非线性电介质。激光的光电场很强,首先在石英晶体中观察到光倍频现象,其后用KDP、ADP可以很容易实现光倍频和光混频(包括差频与和频)以及参量振荡。利用LiNbO3可以使激光的频率连续可调。这些以及其他一些非线性光学效应的出现,引起了广泛的研究,从而发展为非线性光学学科。石英、KDP、ADP、CuCl、GaAs、LiNbO3、BSN、BNN以及PLZT等就成为非常重要的非线性光学介质。电介质物理与非线性光学有着广阔的交叠领域,但两者研究角度是不同的。电介质物理是研究激光作用下电光介质中的非线性电极化过程与介质结构的关系;把宏观的电光(非线性光学)性能与物质的微观组态联系起来,才可能有的放矢地发展制备出性能优异的非线性光学材料。看来,铁电电光材料会比压电电光材料优越,只是目前对于一些问题的规律尚掌握得不够,同时由于技术条件的限制,实际和要求之间还存在很大差距(例如,BSN、BNN在性能上远没有达到要求)。
把激光作为工具,研究固态电介质内的电极化过程,这就是固态电介质喇曼光谱的研究。在一定意义上说,这也就是研究点阵振动光频波与激光的相互作用;研究固态电介质中极化元激发(包括极化子,见固体中的元激发)与激光的相互作用。铁电电光的性能比较优越,就是由于晶体中存在自发极化,因此,研究铁电相变前后的(亦即软模的)激光喇曼散射,不仅可以揭示铁电相变过程的规律,而且也可以提供关于铁电电光性能的分析。所以,电介质物理与固态激光光谱学也有着宽广的交叠领域。 一些晶体在其内部能形成自发应变的小区域,称为铁弹畴 ,同一铁弹畴内的自发应变方向(畴态)相同,任两个铁弹畴的畴态相同或呈镜面对称。外加应力可使铁弹畴从一个畴态过渡到另一畴态。外应力改变时 ,应变滞后于应力变化,且应力与应变是非线性关系。在周期性外应力作用下,应变与应力的关系曲线类似于磁滞回线,称为力滞回线。以上性质称为铁弹性,具有铁弹性的电介质称为铁弹体。铁弹体的电容率 、折射率 、电导率 、热胀系数、导热系数、弹性模量和电致伸缩率等因方向而异,且这种方向性会随应力而变,利用这些特点在制造力敏器件上有着广泛的应用前景。

相似回答