研究现状及发展趋势

如题所述

80年代中后期以来,随着人们对环境问题的重视和可持续发展思想的影响,对地下水的开发利用越来越多地综合考虑社会、经济、环境等制约因素,所建立的管理模型更多地体现了社会、经济、环境协调发展的原则。计算机以及求解管理模型的数学规划算法的进展,也促进了管理模型的发展。从模型的研究内容上,主要集中在地表水-地下水联合调度、地下水量-水质综合管理、地下水可持续利用管理模型的研究上;从模型结构上,多目标和非线性管理模型是当前及今后研究的重点和难点。

一、地下水-地表水联合调度管理模型

地下水和地表水都是水资源的重要组成部分,并具有有机的联系,从系统的观点来看,在开发利用中必须考虑两者之间的联系,寻求最优联合调度方案,可发挥地表水和地下水各自的特点,来达到充分开发水资源潜力、提高水资源利用率、降低开发成本的目的。联合调度的优点在于:①利用含水层的调节库容和两种水资源时空分布的差异,增大水资源可利用量:②发挥包气带和含水层的过滤和吸附等净化作用,提高供水质量;③利用含水层的保温功能和地表水与地下水的温度差,储存能量,节约能源。

由于两种水资源的分布、运动等特性的差异,建立真正意义上的联合调度模型并不容易。大多数研究者将河流作为源汇项来处理,如Morel-Seytoux(1975)提出了与地下水单位脉冲响应函数类似的河流-含水层响应函数,Daubert and Young(1982)运用该函数建立了地下水经济管理模型。由于地表水存在着明显的随机性,因而建立随机地表水-地下水管理模型更为实用(Maddock,1974)。Onta等(1991)建立多阶段地表水-地下水联合调度模型,利用两个系统时间分布的差异提高水资源利用率。

二、地下水量-水质综合管理模型

水资源的管理包括了水量和水质两个方面,对水质管理模型的重视,主要由于以下三个原因:①可持续发展的要求,人们对地下水环境(污染)问题更加重视;②各种途径对地下水的污染日益严重和显著;③利用包气带和含水层的自然净化能力和巨大的环境容量,研究污水排放和处理的最佳途径,如污水土地处理系统。地下水量-水质综合管理模型可用于确定最优污水排放标准、排放量、水力捕获井的最优布局和抽水量等地下水质控制问题。水质模拟模型本身十分复杂,建模要将地下水水量模拟模型和水质模拟模型一起耦合到水质管理模型之中,这样常产生高度非线性、多阶段、大型数学规划问题,目前对于复杂的地下水质管理模型求解仍十分困难。

Willis(1976a)首先建立地下水稳定水质管理模型,Willis(1976b)和Futagami(1976)用嵌入法建立非稳定地下水水质管理模型,Gorelick和Remson(1982b)使用单位浓度响应矩阵建立地下水水质管理模型,这些模型用来确定污水最优排放标准和最大污染质排放量。Gorelick和Remson(1982a)用迭代法确定最优污水灌注量。近来的遗传算法用于求解高度非线性的水质管理模型,是一种非常有益的尝试。Yoon和Shoemaker(1998)建立了生物恢复地下水水质非线性管理模型,分别用遗传算法、分解随机进化对策算法、直接搜索法和基于导数的优化方法求解同一非线性管理模型,并进行了比较。Sawyer和Lin(1998)对随机约束规划在地下水管理模型中的应用进行了综述,用响应矩阵法建立了地下水污染控制管理模型,由于考虑固定费用问题和约束矩阵及右端项的随机性,使该模型转化为求解确定型混合整数非线性规划问题。这种数学规划问题求解难度较大,该研究用遗传算法求解。

水力捕获(hydraulic capture)控制地下水污染是指被污染含水层适当位置设置抽水井,截获被污染的地下水,阻止部分被污染的地下水向供水水源地流动。通过建立地下水水力管理模型,对地下水水位和流速进行控制,可达到最优控制地下水污染的目的。Misirli和Yazicigil(1997)对用水力捕获法建立管理模型进行了综述,并对一假想的有供水水源、受到污染的含水层建立了六种控制地下水污染、保证供水的地下水管理模型。所建立的模型分别用二次规划、线性规划和混合整数规划求解,并对计算结果进行了比较。

三、地下水可持续开发利用管理模型

地下水系统是一个复杂的自然-人工复合系统,它与社会、经济、环境、生态、地表水系统都有着密切的联系,因此,地下水资源的开发利用和科学管理,要综合考虑以上因素。水资源的开发利用,特别是区域水资源的开发利用是十分复杂的,水量和(或)水质不是追求的唯一目标,更多地考虑社会、经济和环境等对水资源的要求,仅仅用地下水水力或水质管理模型无法解决。从可持续发展角度考虑,建立地下水管理模型的原则可归纳为:①水均衡原则,保证地下水资源的永续利用;②双向选择原则,即水资源的规划和管理应适应地区发展,而地区发展规划应考虑水资源条件;③产业平衡原则,水资源的合理配置应使国民经济按比例协调发展;④经济-环境协调发展原则,水资源的开发利用和经济的发展,不能对环境造成严重破坏。

为了建立地下水可持续开发利用管理模型,不仅要对地下水系统的自然属性进行研究,而且要深入研究地下水的环境效应和社会属性,主要有以下四个方面:①地下水资源-经济研究,研究地下水资源的价值、开发成本及供水效益等;②地下水-环境影响评价,研究地下水开发利用对环境产生的影响,建立地下水环境指标体系;③地下水环境-经济评价,评价地下水环境影响的经济效应,建立环境经济指标体系;④根据区域发展规划和水资源条件,进行水资源供需平衡分析。管理模型的建立,实际就是将地下水、环境和经济三个系统耦合,作为一个整体考虑。

Gorelick(1983)将这类模型称为地下水政策评价与分配模型,从建模方法上又分为三种:水力-经济响应模型、模拟-优化耦合模型和谱系模型。谢新民(1991)、朱文彬等(1994)运用大系统理论建立地下水资源系统经济管理模型,邵景力等(1994)将国民经济投入产出模型与地下水管理模型耦合,所得到的管理方案不仅是地下水最优开采方案,而且还有与水有关的产业结构调整方案和地表水取水方案。这类模型涉及因素众多,管理模型通常是多目标和(或)非线性的大型数学规划问题(见下文)。

四、多目标地下水管理模型

多目标管理模型更能体现地下水系统层次性和多目标性,模型不仅能提供地下合理开发利用最优方案,而且可作为宏观经济和环境规划的决策依据,因而更具实用性和可操作性。70年代以来,多目标管理模型用于解决水资源的规划问题(Haimes和Hall,1974;Co-hon和Marks,1975),80年代以后,随着对地下水系统研究的不断深入、地下水模拟技术及其与管理模型耦合技术的发展,多目标规划才出现在地下水管理问题中。与单目标相比,多目标地下水管理模型有如下特点(邵景力等,1998):

(1)各目标间的度量单位多是不可公度的,有些目标甚至很难给出定量指标,如供水的社会效益、环境效应等。用单目标优化方法很难处理不可公度的多目标问题。

(2)各目标间的权益通常是相互矛盾的,这是构成多目标问题存在的基本特征。多目标问题总是以牺牲一部分目标的利益来换取另一些目标的改善。单一目标的最优并不代表系统整体最优。

(3)多目标问题的优化解不是唯一的。多目标规划的任务是考虑经济、社会、环境、技术等因素,权衡各目标的利弊,从多个“有效解”中寻求各目标都能接受的“满意解”。

(4)多目标规划可以充分发挥分析者和决策者各自的作用。在现代管理中,分析者的任务是根据决策者的要求建立管理模型,提供多个各有利弊的方案,作为决策者决策的依据。决策者的任务是站在更高的层次上,兼顾各方面利益,从众多可选方案中确定决策方案。

多目标问题类型多,无统一的数学形式,故没有通用的求解方法。针对不同的管理模型和目标评价准则,应采用相应的解法。一个特例是线性层次目标规划可用于解决大型多目标规划问题,该方法是目前最常用的多目标规划方法。邵景力等(1998)运用线性目标规划求解包头市地下水-经济-环境多目标管理模型。Willis和Liu(1984)首次用响应矩阵法建立多目标地下水管理模型。Datta和Peralta(1986)将代替价值交换法用于地下水-地表水联合调度的多目标管理问题中,两个相互矛盾的目标为最小抽水费用和最大抽水量。Bogardi等(1991)采用一种交互式多目标决策方法求解地下水多目标管理问题,有三个目标函数:总抽水量最大、抽水降深最小和总抽水费用最低。El Magnouni和Treichel(1994)建立了线性多目标地下水管理模型,他们采用逐段线性规划求出最佳协调解,这种方法也可通过迭代求解类似潜水含水层管理这样的非线性多目标规划问题。Ritzel等(1994)用遗传算法求解多目标地下水污染控制问题。

五、非线性地下水管理模型

地下水管理模型的非线性问题是普遍存在的,产生非线性的原因主要由两个,其一是系统状态的非线性,由于分布参数管理模型要与地下水系统模拟模型联立形成数学规划问题,产生了非线性的管理模型。如潜水含水层模拟模型即为非线性的,地下水流场非稳定和(或)未知条件下,对流-弥散方程中有速度和浓度的乘积,为非线性项。二是管理问题的非线性,如目标函数和某些特殊约束条件的非线性。非线性管理模型能更精确地描述地下水系统及其管理问题,因而提高可模型结果的精度和可信度。但由于非线性规划问题没有统一的模式,在可行域内有可能存在多个局部最优解,因而到目前为止,没有通用的、高效的求解方法,要根据管理模型的结构特点和规模,选择合适的求解方法。

线性化是解决非线性问题最简单的方法,如Bear(1979)、Gorelick和Remson(1982b)、Ratzlaff(1992)等。通过迭代将非线性管理模型转化为求解一系列线性规划模型亦是解决非线性问题的有效方法之一,如Aguado和Remson(1974)用预测-校正法通过反复迭代求解潜水含水层地下水管理问题;Willis和Newman(1977)用求解一系列线性规划替代非线性目标函数、线性约束条件的非线性规划问题;Willis(1983)通过反复运用潜水含水层模拟模型校正单位脉冲响应矩阵,解决潜水含水层的管理问题;Gorelick和Remson(1982a)迭代求解线性规划得到最优污水灌注量。

对于目标函数往往是决策变量的二次多项式,若模拟模型和其他约束条件为线性的,则形成二次规划问题。二次规划有统一的表示形式和通用解法,是非线性管理模型中最常用的求解方法之一。如Aguada和Remson(1980)、Lefkoff和Gorelick(1986)、Misirli和Yazicigil(1997)等均是用二次规划求解管理模型。

在管理模型为高度非线性条件下,上述方法均不是有效的算法,这类问题是目前地下水管理模型研究的热点和难点。人工智能算法(又称进化算法,evolutionary algorithms,EA)为求解高度非线性规划问题开拓了广阔的前景,其优点是可得到全局最优解,通用性强,缺点是这些算法均为并行计算,计算工作量巨大,规模稍大的管理模型用一般PC机无法完成计算工作。这类方法主要包括遗传算法(genetic algorithm,GA)、分解随机进化对策(derandomized evolutionary strategy,DES)、模拟退火法(simulated annealing)等,在地下水管理模型中的应用可参阅有关文献(Dougherty和Marryott,1991;Ritzel和Eheart,1994;Rogers和Dowla,1994;McKinney和Lin,1994;Taghavi等,1994;Morshed和Kaluarachchi,1998;邵景力等,1999)等研究。此外,常用于解非线性规划的方法还有直接搜索法(主要有修整单纯形法、Nelder-Mead单纯形法、并行方向搜索法)和基于导数的优化方法(如约束优化的隐式筛选法等)。这方面研究可参阅有关文献(Karatzas和Pinder,1993;Varljen和Shafer,1993;Minsker和shoemaker,1996;Emch和Yeh,1998)。

温馨提示:答案为网友推荐,仅供参考
相似回答