柯西的个人轶事

如题所述

柯西在学生时代,有个绰号叫『苦瓜』,因为他平常像一颗苦瓜一样,静静地不说话,如果说了什么,也很简短,令人摸不着头绪,和这种人沟通,是很痛苦的。柯西的身边没有朋友,只有一群妒嫉他聪明的人。当时法国正在流行社会哲学,柯西工作之余常看的书,却是拉格朗日(Joseph Louis Lagrance,1736-1813)的数学书,与灵修书籍《效法基督》,这使他赢得另一个外号『脑筋劈哩啪啦叫的人』,意即神经病。
柯西的母亲听到了传言,就写信问他实情。柯西回信道:『如果基督徒会变成精神病人,那疯人院早就被哲学家充满了。亲爱的母亲,您的孩子像原野上的风车,数学和信仰就是他的双翼一样,当风吹来的时候,风车就会平衡地旋转,产生帮助别人的动力。』
1816年,柯西回到巴黎,担任母校的数学教授,柯西自己写道:『我像是找到自己河道的鲑鱼一般地兴奋。』不久他就结婚,幸福的婚姻生活,有助于他与别人沟通的能力。 数学大师伯努利曾说过:『只有数学能够探讨「无穷」,而「无穷」正是上帝的属性之一』。物理、化学、生物都是有限之内的学科,『无穷』才能代表永远测不透的极限。『无穷』的观念令哲学家疯征、让神学家叹息,使许多人深感惧怕。柯西却把『无穷』应用来厘定更精确的数学含义,他把数学的微分看或是『无穷小时的变化』,把积分表示为『无穷多个无穷小之和』。柯西用无穷重新定义微积分,至今仍为每一本微积分课本的开宗明义篇。
1821年,柯西的名声远播。远自柏林、马德里、圣彼得堡的学生,都来到他的教室里上课,他又发表非常有名的『特征值』理论,同时写道:『在纯数学的领域里,似乎没有实际的物理现象来印证,也没有自然界的事物可说明,但那是数学家遥遥望见的应许之地。理论数学家不是一个发现者,而是这个应许之地的报导者』。 四十岁后的柯西不愿对新政府效忠,他认为学术应有不受政治影响的自由。他放弃工作与祖国,带着妻子到瑞士、意大利旅行教书,各地大学都很欢迎他。但是他写道:『对数学的兴奋,是身体无法长期的负荷,累!』柯西四十岁后,下课后就不再做研究工作了。
他身体逐渐衰弱,一八三八年他再回巴黎大学教书,但为政治效忠问题再度离开。因着他的坚持,一八四八年法国通过大学教授的学术自由,是以个人的良心为底限,不在政治限制之内。从此世界各大学纷纷跟进这个制度,大学成为学术自由的地方。 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。|<δ时,对应的函数值f(x)都满足不等式:
|f(x)-A|<ε
那么常数A就叫做函数f(x)当x→x。时的极限。
“严格来说,没有数学证明这种东西,分析到最后,除了指指点点,我们什么也不会干;……证明就是我和李托伍德叫做神吹的那套玩意儿,是编出来打动人心的花言巧语,是上课够在黑板上的图画,是激发学生想象力的手法。”——哈代。
数学太重要了,在中国与语文学有着同样的地位。其原因就在于数学本身就是一种语言,而且是一种世界语言,具有普遍性。所以,严格的区分数学概念的词性,是非常有必要的,不仅是数学本身的要求,也是语言科学的要求。
谈到语言和词性,就要了解部分语文基础知识了。
1、名词:表示人或事物、处所、方位等名称的词。
2、动词:表示动作行为、发展变化、心理活动等意义的词。
微积分从诞生的第一天开始,就没有离开过矛盾和驳论。例如,贝克莱驳论(无穷小驳论)、芝诺悖论等。如果,透过这些争论,可以发现其实他们不过是变相的探讨最终形态的问题!正如莱布尼兹关注微粒最终命运一样。有一些人说:柯西-威尔斯特拉斯的极限定义,有“极限回避”的现象。这种说法是片面的也是不客观的,但还是指出了一些问题(应该说最终形态回避)。柯西-威尔斯特拉斯的极限定义,被翻译成中国语言的时候,是非常经典的。柯西-威尔斯特拉斯的极限定义,不单纯的定义了极限,还刻画了一种运动现象-向极限(最终形态)靠近的运动。最后画龙点睛,把最终形态a(如果存在,就是说不清怎么来的)叫做极限。
从语法的分析上看,这个说法本质上给了“最终形态”一个称谓(名字)--极限。所以,柯西-威尔斯特拉斯的极限定义中,极限是一个名词,而不是动词。
于是,就把向极限靠近的运动叫做极限现象。许多人在理解柯西-威尔斯特拉斯的极限定义,混淆了极限现象与极限,笼统的把“极限现象”和“极限”都叫做极限。
关于最终形态的研究,我曾在《微积分秘密报告4》中简单的谈过。既然现代函数极限定义并没有解释最终形态(回避了)!那么,函数的极限定义是要说些什么故事呢?有关的数学证明又在证明什么呢?
其实,是在说一件事:有极限(最终形态),必有极限现象;反过来,有极限现象,必有极限存在!简单来说,就是极限现象是极限(最终形态)的充要条件。所以,要证明极限存在(不必去研究怎么来的),只需证明极限现象存在就够了,确实有投机取巧的嫌疑!
就因为如此,所以现代极限的定义不能告诉你极限怎么来的,只能告诉你极限存在(并且可以证明)。极限现象就本质来看是一种运动现象,描述运动现象的理想工具是什么-函数。所以现代的函数(专业)极限定义,有些函数的味道(一一对应,总有ε和δ对应)也就不起怪了。
有一些人也挺离谱的,把极限说成是动词。理由是,极限的本质是:“一个变化的量无限接近一个固定的量。”这是极限现象的精髓,不是极限的。
可是,要描述极限现象。非要柯西-威尔斯特拉斯绕口的模型吗!当然不是,模型是可以改变的,微积分初等化,就改变了这一模型。使一些复杂的数学证明得到了简化,比如极限的唯一性、函数单调性等。
在柯西的著作中,没有通行的语言,他的说法看来也不够确切,从而有时也有错误,例如由于没有建立一致连续和一致收敛概念而产生的错误。可是关于微积分的原理,他的概念主要是正确的,其清晰程度是前所未有的。例如他关于连续函数及其积分的定义是确切的,他首先准确地证明了泰勒公式,他给出了级数收敛的定义和一些判别法。 虽然柯西主要研究分析,但在数学中各领域都有贡献。关于用到数学的其他学科,他在天文和光学方面的成果是次要的,可是他却是数理弹性理论的奠基人之一。除以上所述外,他在数学中其他贡献如下:
1.分析方面:在一阶偏微分方程论中行进丁特征线的基本概念;认识到傅立叶变换在解微分方程中的作用等等。
2.几何方面:开创了积分几何,得到了把平面凸曲线的长用它在平面直线上一些正交投影表示出来的公式。
3.代数方面:首先证明了阶数超过了的矩阵有特征值;与比内同时发现两行列式相乘的公式,首先明确提出置换群概念,并得到群论中的一些非平凡的结果;独立发现了所谓“代数要领”,即格拉斯曼的外代数原理。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-12-29

相似回答