实数系六大基本定理

如题所述

实数系六大基本定理如下:

1、单调有界定理

单调有界数列必有极限。具体来说:单调增(减)有上(下)界数列必收敛。

2、闭区间套定理(柯西-康托尔定理)

对于任何闭区间套,必存在属于所有闭区间的公共点。若区间长度趋于零,则该点是唯一公共点。

3、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理)

闭区间上的任意开覆盖,必有有限子覆盖。或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。

4、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理)

有界无限点集必有聚点。或者说:每个无穷有界集至少有一个极限点。

5、有界闭区间的序列紧性(致密性定理)

有界数列必有收敛子列。

6、完备性(柯西收敛准则)

数列收敛的充要条件是其为柯西列。或者说:柯西列必收敛,收敛数列必为柯西列。

拓展资料:

定义实数的一种途径。按照它,所谓实数系就是定义了两种二元运算(加法与乘法)和一种次序关系>的集合,并且这些运算和次序满足规定的公理。由这些公理可以推出实数的一切性质。

在闭区间上连续函数的性质的证明中,实数系的基本定理是非常重要的工具,但是它们之间的等价性不能说明它们都成立,必须要有更基本的定理来证明其中之一成立,从而以上的命题都成立,进过反复仔细琢磨,问题就归结为实数的引入问题了。

通过实数十进制小数形式推出确界定理,这也说明了建立实数系的严格定义的重要性。从逻辑上,应该是先建立了实数,有了实数的定义之后,再得出实数系的基本定理,从而能够在实数域上建立起严格的极限理论,最后得到严格的微积分理论,但数学历史的发展恰恰相反。

温馨提示:答案为网友推荐,仅供参考
相似回答