可微和可导是完全等价的
判断
复变函数是否可微通常的依据是“柯西-黎曼方程”
f(z)=u(x,y)+iv(x,y)在一点z0=x0+iy0可导,等价于u(x,y)和v(x,y)都在(x0,y0)处可微,且在这点处满足ux=vy和vx=-uy[注:ux,uy,vx,vy的下标表示u,v对其的
偏导数]
而至于u(x,y),v(x,y)可微的定义是什么,这就是实函数的概念了,可以复习一下多元微积分的知识
如果函数f(z)在z0的某个
邻域处处可导,就说f(z)在z0处解析
如果函数f(z)在(开)区域D内处处可导,就说f(z)在区域D内解析,或者称f(z)是D上的解析函数
一般不定义闭区域上的解析函数
区别就是:可导、可微可以只在一点或者一条曲线上成立,也可以在区域、闭区域上成立,但可微只能在区域(或者点的邻域)内成立。