水资源开发利用的环境地质效应

如题所述

3.2.1 环境水文地质作用

在水资源的开发利用中,地下水因其水质好,动态相对稳定故被许多国家作为主要的开发利用对象。美国大约50%的畜牧业和灌溉用水,40%的公共供水依靠地下水。而地中海岛国马尔他和位于西亚干燥高原的沙特阿拉伯,则100%的依靠地下水(表3.4)。

表3.4 典型国家地下水在供水中所占的比重

大规模地开发利用地下水,必然引起环境水文地质作用。环境水文地质作用是指地下水在人为和自然因素影响下,由水化学、水动力学、水物理学和生物学性质变化引起的对人类生产和生活环境的制约作用。按作用的机制,环境水文地质作用主要有环境水文地球化学作用、环境水动力学作用、环境水物理学作用、环境水文地质生态作用。各种作用的控制指标及其环境影响结果等列于表3.5。

表3.5 环境水文地质作用的类型及作用结果

3.2.1.1 环境水文地球化学作用

环境水文地球化学作用是指在人工干预下,在一定渗流和水文地球化学条件下,物质迁移、转化的作用,是决定污染物质迁移转化规律的主要作用。主要有酸碱作用、氧化-还原作用、吸附-解吸作用、络合与螯合作用、稀释和浓缩作用、生物净化与浓集作用、放射性衰变和细菌繁殖与衰亡作用,以及污染质在水中的弥散作用。通过这些作用,水污染物质在环境系统中发生迁移、富集、转化、分散、净化、毒性改变,从而造成水质恶化、公害病等不良环境影响,或使水体发生净化作用。

3.2.1.2 环境水动力作用

环境水动力作用是指由地下水动力要素变化而引起的地质环境中相互间的能量交换作用。通过荷载效应、应力腐蚀效应、孔隙水压力效应、潜蚀吸蚀效应等作用,破坏地质环境中不同单元间的力学平衡,引发地面沉降、岩溶塌陷等地质灾害。地下水位的下降,会造成水动力场各要素如水力坡度、渗透速度、水压力的变化。

3.2.1.3 环境水物理学作用

环境水物理学作用是指地下水对热能的传播和转化而引起的建筑物地基失稳和地下水水质变坏的环境作用。由于人工热流出物的影响,水温度发生变化可引起水体热污染,影响水质和水生生态平衡。

3.2.1.4 环境水文地质生态作用

水质、水量和水温等变化都可引起生态平衡的破坏。大量开采地下水造成的区域性水位下降,使包气带土壤水分减少,土壤结构破坏,出现土壤沙化和草原退化;不恰当的引水灌溉造成的地下水水位上升引发土壤盐渍化,从而破坏农业生态平衡;水污染物中氮、磷等营养物过多,可造成湖泊、海湾等水体中藻类灾害性的生长,使水体质量下降,危害水生生态系统。

3.2.2 水资源开发利用的环境地质正效应

水资源的开发利用对社会、经济发展起到了不可估量的作用,如果在科学评价,合理开发基础上利用,则会促使环境变化向有利于人类生存的方向发展,这种作用叫做正的环境效应。

3.2.2.1 地表水利用过程中的环境地质正效应

通过筑坝形成水库,以提高水位,调节径流,改善水质,实现灌溉、发电、供水、防洪、航运等综合效益所带来的环境正效应如下。

3.2.2.1.1 增加蒸发,利于防洪

由于水库增大了自由水面的面积,增加了蒸发损失,美国的大平原南部一些水库在降雨较少的年份,最大蒸发损耗达42%,这对于专为用于防洪而营建的小水库来说,水量损耗可以增加水库的防洪能力,因为它使洪水量迅速减小。美国大平原南部由于年蒸发量远大于年径流量,水库的防洪效益比美国其他地区都好,俄克拉何马州体格河上的25座水库的临时蓄洪作用使特大洪水淹没和洪泛平原的面积减少了23%。

3.2.2.1.2 调节径流

水库对径流的影响主要表现在对流量的调节作用上,使流量在时间上重新分配,使下游河道水流的长期和短期的变化幅度减小,有利于水生物的生活。

3.2.2.1.3 增加地下水的入渗补给量

水库修建后,往往在库区附近地区增大了地表水入渗补给时间和面积,促使地下水位回升,有利于减缓或防止地面沉降等地质灾害的发生。

当然水库的修建引起蒸发量的增大,从水资源角度来说是一种损失,也使用于灌溉、发电、航运等兴利方面的效益减小。

3.2.2.2 地下水资源开发利用中的环境地质正效应

合理开发利用地下水可以为当地带来下列环境正效应。

3.2.2.2.1 控制土壤返盐

土壤盐分变化与潜水动态密切相关。地下水位埋深越浅,潜水蒸发量越大,向表土输送的盐分就越多,也就越容易造成土壤盐渍化。反之,如果将地下水位控制在一定的深度,就能抑制土壤返盐,并使盐碱地得到改良。如河北平原石津灌区实行井灌与渠灌相结合,控制地下水位埋深在2.5~3m,使全灌区盐碱地面积由1972年的4.21×108m2减少到20世纪80年代的240×106m2山东禹城试验区改引黄灌溉,为井灌,加上明沟排水,使盐碱地大幅度下降。整个黄淮海平原,自20世纪50年代后期大规模开采浅层地下水到80年代中期,盐碱地已减少了一半。

3.2.2.2.2 调蓄地下库容

在地下水位埋深较浅地区,合理降低水位可增大地下调蓄库容,有利于降水渗入补给。从1975~1988年,河北平原京津以南地区,浅层水水位平均下降了5.9m,腾空了地下库容2.9×1010m3,增大了地下调蓄能力。在黄河平原上,从1966年以后,地下水的开采不断增大,加上深挖河道降低地下水的排泄基准面,促进了地下水的水平排泄,使该区地下水位埋深长年处于2~3m的状态,增强了降水入渗能力,也减少了地表径流。

3.2.2.2.3 改善水质

傍河开采地下水,激发河流补给,不仅供水稳定,而且利用岩层的天然过滤和净化作用,使难于利用的多泥沙河水,转化为水质良好的地下水,为沿河城镇和工业集中供水提供水源。北京、西安、兰州、西宁、太原、哈尔滨等大城市,大型供水水源地都是傍河取水型的。

3.2.2.2.4 减缓土地沙漠化

利用深层地下水灌溉,可以增加土壤水含量,促进植被生长,减少土地沙漠化面积。

3.2.3 水资源开发利用的环境地质负效应

随着社会经济的迅速发展,人类对水资源开发利用量不断增加,常常改变了水资源的自然循环过程、方式和强度,从而给当地环境带来一系列不利的影响,这种现象称为环境负效应。

3.2.3.1 区域地下水位下降,局部浅层水资源枯竭

地下水的动态变化,实质上是其补给与排泄两个环节宏观上的综合表现。例如在含水层中,补给水量大于排泄水量,便引起水量增加,水位上升;反之,则水量减少,水位下降。从一个地区来说,地下水未经大量开采之前,基本上处于一种动态均衡状态,地下水位大致保持相对稳定。但是,随着人类生产活动加剧,地下水多年平均开采量超过多年平均补给量,就会破坏这种动态均衡状态,消耗含水层的“储存量”,其结果就出现了直观上的地下水位逐年下降。

地下水超量开采的直接后果是区域水位持续性下降,地下水降落漏斗范围不断扩大。日本东京地区、美国加利福尼亚中央谷地、墨西哥城等处均因大规模开发地下水而造成区域地下水位下降,局部地段浅层含水层中的地下水已趋枯竭,出现出水量减小,水位降深加大,吊泵甚至井孔报废现象。

我国的华北平原水位下降较普遍,深层水水位每年以3~5m的速率下降,天津、沧州、衡水、德州一带降落漏斗已连成一片,面积达3.18×104km2。其中沧州漏斗面积达9830km2,漏斗中心水位埋深达78m。浅层水水位降落漏斗分布于北京市及京广铁路沿线的保定、石家庄、邢台、邯郸到安阳一带,面积达1.89×104km2。我国苏-锡-常地区,随着近些年乡镇企业的发展,地下水利用量逐年增加,由于开采地点集中,时间集中和开采层次集中(多开采第Ⅱ承压水),致使自80年代中期以来,地下水位以平均0.5~1.5m/a的速度下降,区域地下水降落漏斗1996年就超过了5000km2吴县、锡山和武进3市漏斗中心水位埋深已分别达65m、75m和80m。

区域地下水位下降,不仅直接造成取水工程效益下降或报废,还会诱发泉水断流,地面沉降、岩溶塌陷、地下水质恶化等生态环境问题。

3.2.3.2 泉水流量衰减或断流

北方旅游城市的部分著名岩溶泉水,因泉域内地下水开采布局不合理,在泉水周围或上游凿井开采同一含水层的地下水,导致泉水流量衰减,枯季断流,甚至干涸。如山东济南岩溶泉群(趵突泉等)枯季出现断流。山西太原晋祠泉流量已由20世纪50年代的1.98m3/s,逐渐衰减,至90年代初已断流。西北内陆干旱区,由于在黄土带大量开采地下水以及在出山口过多兴建地表水库及在戈壁带修建高防渗渠道,改变了河水对地下水补给的天然条件,河水渗漏补给量大量减少,造成山前冲洪扇泉水溢出流量大幅度下降。如甘肃河西走廊石羊河流域,20世纪70年代的泉水流量比60年代减少五分之三,原有绿洲的泉灌区逐渐变为井灌区。同样,新疆吐鲁番盆地的坎儿井的水量亦出现了衰减,给农业生产和人民生活带来不利的影响。

3.2.3.3 地面沉降

地面沉降是指地面高程的降低,又称地面下沉或地沉,均指地壳表面某一局部范围内的总体下降运动。地面沉降以缓慢的、难以察觉的向下垂直运动为主,只有少量的或基本没有水平方向的位移,可能影响的平面范围可达几千平方公里。在某些实例中地面沉降是一种自然动力地质现象,而多数是由人类活动所引起的,常以地壳表层一定深度内岩土体的压密固结或下沉为主要形式。

自19世纪末以来,随着世界范围内人类工程活动强度和规模的不断增大,许多地区陆续出现了地面下沉现象。在诸多实例中,由于人类抽取地下液体的工程活动而引起的地面沉降最为普遍。意大利的威尼斯城是最早被发现因抽取地下水而产生地面沉降的城市。之后,日本、美国、墨西哥、中国、欧洲和东南亚一些国家中的许多位于沿海或低平原上的城市或地区,由于抽取地下液体而先后出现了较严重的地面沉降问题(表3.6)。

表3.6 世界各地地面沉降概况一览表

我国从20世纪60年代起,在上海、北京、天津、西安等城市先后出现了地面沉降现象。处于渭河第二级阶地的西安市城区,地面沉降已经发展到了极其严重的地步,与之伴生的地裂缝等严重影响了城市的发展。许多楼房建筑物遭到破坏,多处道路、煤气和输水管道被错断,某些古建筑受到明显影响;钟楼在1971~1988年间累计沉降279.4mm,大雁塔向西倾斜886mm,向北倾斜170mm,南城墙西段曾因为地裂缝和沉降不均匀发生坍塌。1976年之前,西安地面沉降极缓,年平均沉降速率5.3mm,其后随着地下承压水开采量加大,承压水位下降,地面沉降与承压水位漏斗吻合,形成复合型沉降区。到1988年时,沉降地域面积达160km2,市区年平均沉降速率34.6mm,有7个沉降中心。其中胡家庙沉降中心累计沉降已达1 230mm,后村—观音庙沉降中心累计沉降量达1 330mm。市区地裂缝活动程度日趋剧烈,总长度达76.68km,垂直位移速率5~30mm/a,水平位移3~4mm/a。虽然西安市区地裂缝的产生与关中盆地的新构造隐伏断裂活动有一定的联系,但是地面的不均衡沉降也是其直接的诱因。所以地裂缝分布范围与地面沉降范围重合,地裂缝多沿着各个沉陷中心的一侧伸展。

图3.3 天津地区1965~1988年地面沉平均速率图

据王若柏(1994)研究,位于渤海湾平原的天津地区,在大量开采地下水之前的20世纪前半叶,水准观测表明,其新构造沉降速率为4~6mm/a。1923年开始开采承压水,1959年在天津市区发现地面沉降的现象。20世纪60年代后期工农业生产大规模开采地下水,其中1970~1971年平均开采地下水0.89×108m3,地面沉降速率为40mm/a;1972~1985年平均开采地下水(1.0~1.2)×108m3/a,地面沉降量为75~120mm/a;1986年关井减采,1988年开采量下降为0.67×108m3,地面沉降减缓为24mm/a。这显示地面沉降速率与地下水开采量成正相关关系。在整个天津地区,1975年地面沉降范围还只有600km2,有市区和宁河(汉沽)两个沉降中心;1979年时沉降范围猛增到4 000km2,天津、宁河和武清沉降中心扩大而联结为大型复合沉降中心;1983年时沉降范围增至6 000km2,各沉降中心沉降速率极高,如天津市区113.3mm/a、汉沽118.0mm/a、塘沽107mm/a、任丘40mm/a;1988年整个地区沉降面积达7 000km2,许多中等城市都发生沉降,形成一个规模巨大的多中心复合型沉降区(图3.3)。天津市区的工学院水准点,1996年埋设标高为3.39m,到1988年时仅有1.64m,反映出22a里地面累计沉降1.75m。市区沉降中心最大累积沉降量已达 2.62m之多。塘沽和汉沽的某些区域,地面出现负标高或者与海平面持平。由于地面沉降,市区出现污水外溢,海河河道泥沙大量淤积,汛期排洪不畅,沿河两岸出现沼泽化,海水倒灌,水质恶化,风暴潮灾害损失剧增。这一系列的环境问题,严重影响着当地经济、社会的持续发展。

上海市位于长江三角洲前沿,松散沉积物厚达300m。1921~1965年市区地面平均下沉1.76m,最大沉降量 2.63m。1966年采取控制措施以来,地面沉降得到缓解(刘铁铸,1994)。位于渤海湾的大港油田,地面标高1~3m。自从1965年投产以来,油田注水和生活用水大量抽取第四系淡水,使某些区域地下水位由0m下降到-80m(北大港),全区地面沉降0.808m,沉降中心下沉达1.70m。这使得油田管理系统变形甚至断裂,风暴潮和洪水危害油井、港口和各种建筑物(李德生等,1994)。

苏州、无锡、常州三市自20世纪60~70年代发现地面沉降现象,至1994年,三市沉降中心累计沉降量分别为1 407mm,1 140mm和1 050mm,三市因地面沉降造成的直接经济损失已达12亿元,间接损失无法估量。

地面沉降造成的危害极大,必须认真防治。具体措施如下:

(1)压缩地下水开采量,严禁超采。这是防止地面沉降的根本措施。应通过“开源节流”的方式,减少地下水的开采量,实行分质供水,优质优用,地下水仅作为饮用,工业用水尽量多利用地表水,推广循环用水技术。

(2)调整开采层次,尽量开发深层地下水。苏-锡-常地区的地面沉降主要是于开采“三集中”所造成,应实行科学规划,调整开采层次,如工业用水应尽可能利用水质相对差一点的第Ⅰ承压水,保护水质好的第Ⅱ承压含水层的地下水,只作为饮用水供水,改变目前饮水开发第Ⅰ承压层水,工业用第Ⅱ承压层水的现象,即人吃坏水,工业用好水的不合理现象。

(3)通过人工回灌等措施增加地下水补给量。上海市为了使地下水回升和达到控制地面沉降的目的,自1966年开始,以“冬灌夏用”为主,“夏灌冬用”为辅的区域性地下水人工回灌措施,使地下水获得了大量人工补给,市区地面随着区域水位的大幅度回升,由过去常年沉降转为“冬升夏沉”状态,并使地面沉降得到了基本控制。

(4)加强城市雨水利用工作。学习德国先进经验,运用生态学补偿原理,通过屋面集水,人行道使用渗水材料等技术,增加城市地下水补给量,减少城市无效径流,提高雨水利用率。

3.2.3.4 岩溶地面塌陷

岩溶地面塌陷指覆盖在溶蚀洞穴发育的可溶性岩层之上的松散土石体,在外动力因素作用下,发生的地面变形破坏。其表现形式以塌陷为主,并多呈圆锥形塌陷坑。自然条件下产生的岩溶塌陷一般规模小,发展速度慢,不会给人类生活带来较大的影响。但在人类工程生活中产生的岩溶塌陷规模较大,突发性强,且常出现于人口聚集地区,给地面建筑物和人身安全带来严重威胁,造成地区性的环境地质灾害。

由于岩溶洞穴或溶蚀裂隙的存在、上覆土层的不稳定性和地下水对土层的潜蚀搬运作用,采排岩溶地下水常引起地面塌陷。前者是塌陷产生的物质基础,后者是引起塌陷的动力条件。自然条件下,地下水对岩溶充填物质和上覆土层的潜蚀作用也是存在的,不过这种作用很慢,故塌陷较少,而且规模不大。人为采排地下水,对岩溶充填物和上覆土层的侵蚀搬运作用大大加强,促进了地面塌陷的发生和发展。此类塌陷的形成过程大体可分如下四个阶段:

(1)在抽水、排水过程中,地下水位降低,水对上覆土层的浮托力减小,水力坡度增大,水流速度加快,水的侵蚀作用加强。溶洞充填物在地下水的侵蚀、搬运作用下被带走,松散层底部土体下落、流失而出现拱形崩落,形成隐伏土洞。

(2)隐伏土洞在地下水持续的动水压力及上覆土体的自重作用下,土体崩落、迁移,洞体不断向上扩展,引起地面沉降。

(3)地下水不断侵蚀、搬运崩落体,隐伏土洞继续向上扩展。当上覆土体的自重压力逐渐趋于洞体的极限抗压、抗剪强度时,地面沉降加剧,在张性压力作用下,地面产生开裂。

(4)当上覆土体自重压力超过了洞体的极限抗压、抗剪强度时,地面产生塌陷。同时,在其周围伴生有开裂现象。这时因为土体在下塌过程中,不但在垂直方向产生剪切应力,还在水平方向产生张力所致。

图3.4 徐州市塌陷区土洞发育示意图

岩溶地面塌陷在我国许多城市均有发生,如桂林、徐州、常州等市。徐州市主要开发利用岩溶地下水,第四系松散层厚度5~30m,每天供水量40×104m3,大大超过其补偿量[每天(20~25)×104m3],导致岩溶地下水位连年下降,漏斗中心水位埋深已大于90m,在上覆土层中形成了许多土洞。1992年4月12~13日,云龙区新生里2×104m3范围内发生岩溶地面塌陷,形成塌坑9个,最大一个长25m,宽19m,共破坏民房224间,直接经济损失4000万元,其土洞发育机制如图3.4所示。

3.2.3.5 海水入侵

沿海城市和地区在滨海含水层中超量开采地下水,造成咸淡水界面变化,海水侵入含水层,地下水水质恶化,矿化度及氯离子浓度增高。

海水入侵是沿海地区水资源开发带来的特殊环境问题,在国外广泛存在。美国的长岛、墨西哥的赫莫斯城,以及日本、以色列、荷兰、澳大利亚等国家的滨海地区都存在这一问题。

我国海岸线长达1.8×104km,沿海地区是我国经济发展的重点地区,海水入侵会带来严重的经济损失。如大连、锦西、秦皇岛、青岛、厦门等地,由于海水入侵,水质恶化、大量水井报废、粮食绝产、果园被毁、严重地妨碍了工农业生产和旅游业的发展。

莱州湾沿岸的莱州市,1976~1989年14a内,地下水可开采量为16.2×108m3,实际开采量达24.58×108m3,共超采8.38×108m3,形成了地下水降落漏斗,中心水位最低标高为-16.74m,引起了海水大面积入侵。旅大地区金州湾沿岸的大魏家水源地,从1969年建成投产以来,由于实际开采量(6.2×104m3/d),为允许开采量(3.1×104m3/d)的2倍,漏斗中心水位降深最大达13.58m,水位标高最低为-9.86m,引起海水入侵,水中Cl-含量普遍上升。

3.2.3.6 水质恶化

由于大规模开发地下水,导致区域水位下降,包气带厚度增加,促使环境水文地球化学作用增强,从而影响地下水的水质,这种现象在许多地区都发生过,徐州市尤为明显。由于大规模的超采,使该区地下水位以2m/a的速度下降,降落漏斗以每年8km2的速率扩展,因此引起了水动力场及水文地球化学环境的一系列变化。其变化较为明显的是地下水系统中氧化还原环境的改变,使原来地段变成了包气带,造成某些矿物及化学成分的氧化变成较易溶解的盐类。例如,残存于土壤里的在包气带条件下会被硝化而形成易迁移的和,其反应方程式为:

环境地质与工程

同时也促使包气带中难溶的硫化物变为易溶解的硫酸盐,加重了和的污染。由于硝化作用导致水中和离子增多以及pH降低,大大促进了CaCO3的溶解;同时当pH接近6时,又能阻止CaCO3的沉淀反应。因此,地下水中Ca2+、Mg2+离子含量总体上呈上升趋势;此外,由于水位的大幅度下降地下水流速增大,水循环交替加快,加强了氧化作用,增大了淋滤的路径,加强了淋滤作用,造成在灌溉污水及地表固体废物和粪便垃圾和淋滤水下渗过程中使包气带中大量易溶的钙、镁的氯化物和硫酸盐不断溶解,增加了地下水中Ca2+、Mg2+、离子浓度;同时由污染组分分解形成的CO2不断溶于水,使pH降低,使更多的碳酸盐矿物溶解,造成了大面积的硬度污染。

这类地下水水质恶化现象,在我国北方大量开采地下水的许多大中城市,如北京、石家庄、西安、呼和浩特、新乡、开封、兰州等表现得特别明显。例如,在我国为数不多的几个以地下水作为惟一供水源的大城市之一的石家庄市,市区大部分范围内的孔隙潜水,在60年代中期大量开采地下水的初期,矿化度一般仅为0.3~0.4g/L,总硬度一般为13~15德国度(扇间地带,因径流条件较差,其矿化度和硬度较高);而到80年代中期,大多数地区的矿化度已上升到0.5~0.8g/L,硬度上升到17~25德国度。在地下水开采强度最大的区域地下水降落漏斗中心地段,矿化度达到了0.85~1.0g/L,个别点上已大于 1.5g/L,硬度达到30~33德国度,个别点上达到64.6德国度。另据河南省第一水文地质大队监测资料,新乡市区的孔隙潜水在1984~1989年的5a内,矿化度和总硬度均随着开采量的增加和区域地下水位降落漏斗的加深而迅速上升。每年,矿化度的上升速率为0.028~0.10g/L,硬度上升速率为0.5~5德国度。应特别指出的是,地下水硬度的大幅度升高,目前已成为北方城市地下水开采过程中水质恶化的一个主要问题。例如,北京市水源七厂,1964年投产时地下水的硬度为17~18德国度,1978年则升高到33.1德国度,平均每年以0.9°的速率递增。西安市地下水硬度的年增幅为1.03°~3.82°。兰州市年增幅为1.75°,其中,马滩水源地带供水井中的最高硬度值已达123.5德国度。据有关部门初步估计,我国北方城市,为软化地下水水质,每年需要上亿元费用。

温馨提示:答案为网友推荐,仅供参考
相似回答