两个独立的正态分布相减公式是D(X+Y)=DX+DY;D(X-Y)=DX+DY。
两个正态分布的任意线性组合仍服从正态分布(可通过求两个正态分布的函数的分布证明),此结论可推广到n个正态分布 。
例如:
设两个变量分别为X,Y,那么E(X+Y)=EX+EY;E(X-Y)=EX-EY。
D(X+Y)=DX+DY;D(X-Y)=DX+DY。
性质:
正态分布的性质:如果X1,…,Xn为独立标准常态随机变量,那么X1²+…+Xn²服从自由度为n的卡方分布。
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。