将函数f(x)=1/x 展开成x-3的幂级数是2,∞>n(n-1)x^(n-2)], -1 < x < 1。
解答过程如下:
f(x) = 1/(1-x)^3
= (1/2)[1/(1-x)^2]'
= (1/2)[1/(1-x)]''= (1/2)[∑<n=0,∞>x^n]''
= (1/2)[∑<n
=2,∞>n(n-1)x^(n-2)], -1 < x < 1
形式幂级数
在形式幂级数中,x从来不指定一个数值,且对收敛和发散的问题不感兴趣,感兴趣的是系数序列,我们研究形式幂级数完全可以归结为讨论这些系数序列,且这些系数序列又可看作含有分量a(0),a(1),...,a(n),...的无穷矢量,系数a(0)称为级数的常数系数。
用近世代数的语言来讲,形式幂级数形成一个环,这个环对加法有零元(用0表示),对乘法有单位元(用1表示),如果从某项以后,形式幂级数的所有系数全为零,它被称为形式多项式。
将函数f(x)=1/x 展开成x-3的幂级数是2,∞>n(n-1)x^(n-2)], -1 < x < 1。
解答过程如下:
f(x) = 1/(1-x)^3
= (1/2)[1/(1-x)^2]'
= (1/2)[1/(1-x)]''= (1/2)[∑<n=0,∞>x^n]''
= (1/2)[∑<n
=2,∞>n(n-1)x^(n-2)], -1 < x < 1
扩展资料:
函数展开成幂级数的方法是:
1、直接展开:
对函数求各阶导数,然后求各阶导数在指定点的值,从而求得幂级数的各个系数。
2、通过变量代换来利用已知的函数展开式:
例如 sin2x 的展开式就可以通过将 sinx 的展开式里的 x 全部换成 2x 而得到。
3、通过变形来利用已知的函数展开式:
例如要将 1/(1+x) 展开成 x−1 的幂级数,就可以将函数写成 x−1 的函数,然后利用 1/(1+x) 的幂级数展开式。
4、通过逐项求导、逐项积分已知的函数展开式:
例如 coshx=(sinhx)′,它的幂级数展开式就可以通过将sinhx 的展开式逐项求导得到。需要注意的是,逐项积分法来求幂级数展开式,会有一个常数出现,这个常数是需要确定的。确定的方法就是通过在展开点对函数与展开式取值,令两边相等,就得到了常数的值。
5,利用级数的四则运算:
例如 sinhx=(e^x−e^{−x})/2,它的幂级数就可以利用e^x 和 e^{−x} 的幂级数通过四则运算得到。
本回答被网友采纳