画角平分线(尺规作图)的方法如下:
以该角顶点为圆心以适当长度为半径画弧,与角的两边分别产生一个交点,分别以这两个焦点为圆心,一定长为半径画弧,(半径长度必须使两条弧有交点),产生一个交点,连接角的顶点和两弧交点并延长,所得射线即为所求。
角平分线的介绍如下:
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。角平分线的判定定理:在角平分线上的任意一点到这个角的两边距离相等。
从一个角的顶点引出一条射线(线在角内),把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。
角平分线定理1是描述角平分线上的点到角两边距离定量关系的定理,也可看作是角平分线的性质。
三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。
角平分线定理2是将角平分线放到三角形中研究得出的线段等比例关系的定理,由它以及相关公式还可以推导出三角形内角平分线长与各线段间的定量关系。