贝克莱的谬误在哪里

贝克莱有一句:“存在即是被感知”,这句话应该说是有谬误的。但是,我对于这一点的理解有些含糊。
罗素在《西方哲学史》这本书里讲到贝克莱时,分析他的观点,但是我不清楚他所认为的谬误在哪里,可以在这里看到
http://post.baidu.com/f?kz=196748699

我有一个观点:人在梦中,会认为一切都是实在的、存在的,而实际上是虚幻的、意识的东西。但是,谁能证明我们活在这个世界上不是虚幻的?也就是说谁能证明我们不是在做梦或类似做梦的活着?
所以问题有三;
1.存在即是被感知的谬误是什么?
2.罗素认为贝克莱观点的谬误在哪里?
3.如何反驳我的观点?
PS:举“你没有感知到父母,难道父母就不存在吗?”这个论据不能反驳这句话。
三个问题中必答第三问。
最佳答案不仅得到所付分值,另外我将追加我所能追加的最大分值。前提:回答的答案必须能够清楚的使我明白,谢绝复制粘贴。
恐怕我会进行问题补充,希望能有耐心!
真诚的感谢各位的回答!!
czqls ,呵呵…感谢你的观点!没错!往往我们也会意识到在做梦,但是,有一个界限,也就是即使意识到了,但是在你没有真正醒来之前,那些所见所感与你看来是实在存在的。就像你讲到的,梦中想要解手,如果继续下去会导致现实中的问题…由此可见那感觉也是实在的,在你来讲不是虚幻的。这种感觉我也有过。再次感谢你的回答!
小小的狐狸,你前面的观点我了解了,和我已知的观点有些不同。可能是我对贝克莱的观点了解不多。后面提到的证明上帝存在我知道,如你所讲。另外,最后你提到“没有哪位哲学家会以为世界不过是我个人的思想,那也太弱智了。 ”我不是哲学家,但是我目前的思维困境就在于此,如何证明不是呢?我的第三问就是这个问题。最后,感谢你的回答!
lanyp85,你提到梦的原理,我了解。不过,我想知道深处梦境的时候,无论你是否清醒的意识到是在梦中,但在梦中的所见所感应该说当时认为都是实在存在的。那么同理,我们生活的世界如何证明不同于做梦呢?掐一下自己,痛刺激自己不一定会“醒来”。因为有一种叫梦魇的现象。醒不了的噩梦。最后,感谢你的回答!

感谢各位!如无有补充和新回答者,我将于一小时后,选定最佳答案!谢谢!!

数学悖论与三次数学危机
世界经理人·科技 TECH.ICXO.COM ( 日期:2004-01-12 09:06)

--------------------------------------------------------------------------------

什么是悖论?笼统地说,是指这样的推理过程:它看上去是合理的,但结果却得出了矛盾。悖论在很多情况下表现为能得出不符合排中律的矛盾命题:由它的真,可以推出它为假;由它的假,则可以推出它为真。由于严格性被公认为是数学的一个主要特点,因此如果数学中出现悖论会造成对数学可靠性的怀疑。如果这一悖论涉及面十分广泛的话,这种冲击波会更为强烈,由此导致的怀疑还会引发人们认识上的普遍危机感。在这种情况下,悖论往往会直接导致“数学危机”的产生。按照西方习惯的说法,在数学发展史上迄今为止出现了三次这样的数学危机。

希帕索斯悖论与第一次数学危机

希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈起。勾股定理是欧氏几何中最著名的定理之一。天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。在我国,最早的一部天文数学著作《周髀算经》中就已有了关于这一定理的初步认识。不过,在我国对于勾股定理的证明却是较迟的事情。一直到三国时期的赵爽才用面积割补给出它的第一种证明。

在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。

图为毕达哥拉斯

毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

图为欧多克索斯

二百年后,大约在公元前370年,才华横溢的欧多克索斯建立起一套完整的比例论。他本人的著作已失传,他的成果被保存在欧几里德《几何原本》一书第五篇中。欧多克索斯的巧妙方法可以避开无理数这一“逻辑上的丑闻”,并保留住与之相关的一些结论,从而解决了由无理数出现而引起的数学危机。但欧多克索斯的解决方式,是借助几何方法,通过避免直接出现无理数而实现的。这就生硬地把数和量肢解开来。在这种解决方案下,对无理数的使用只有在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。或者说无理数只被当作是附在几何量上的单纯符号,而不被当作真正的数。一直到18世纪,当数学家证明了基本常数如圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学园地中才真正扎下了根。无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。

贝克莱悖论与第二次数学危机

第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。

(图为贝克莱主教)1734年,贝克莱以“渺小的哲学家”之名出版了一本标题很长的书《分析学家;或一篇致一位不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘、信仰的要点有更清晰的表达,或更明显的推理》。在这本书中,贝克莱对牛顿的理论进行了攻击。例如他指责牛顿,为计算比如说 x2 的导数,先将 x 取一个不为0的增量 Δx ,由 (x + Δx)2 - x2 ,得到 2xΔx + (Δx2) ,后再被 Δx 除,得到 2x + Δx ,最后突然令 Δx = 0 ,求得导数为 2x 。这是“依靠双重错误得到了不科学却正确的结果”。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。

数学史上把贝克莱的问题称之为“贝克莱悖论”。笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式逻辑而言,这无疑是一个矛盾。这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。

左图为牛顿 右图为布尼兹

针对贝克莱的攻击,牛顿与莱布尼兹都曾试图通过完善自己的理论来解决,但都没有获得完全成功。这使数学家们陷入了尴尬境地。一方面微积分在应用中大获成功,另一方面其自身却存在着逻辑矛盾,即贝克莱悖论。这种情况下对微积分的取舍上到底何去何从呢?

“向前进,向前进,你就会获得信念!”达朗贝尔吹起奋勇向前的号角,在此号角的鼓舞下,十八世纪的数学家们开始不顾基础的不严格,论证的不严密,而是更多依赖于直观去开创新的数学领地。于是一套套新方法、新结论以及新分支纷纷涌现出来。经过一个多世纪的漫漫征程,几代数学家,包括达朗贝尔、拉格朗日、贝努力家族、拉普拉斯以及集众家之大成的欧拉等人的努力,数量惊人前所未有的处女地被开垦出来,微积分理论获得了空前丰富。18世纪有时甚至被称为“分析的世纪”。然而,与此同时十八世纪粗糙的,不严密的工作也导致谬误越来越多的局面,不谐和音的刺耳开始震动了数学家们的神经。下面仅举一无穷级数为例。

无穷级数S=1-1+1-1+1………到底等于什么?

当时人们认为一方面S=(1-1)+(1-1)+………=0;另一方面,S=1+(1-1)+(1-1)+………=1,那么岂非0=1?这一矛盾竟使傅立叶那样的数学家困惑不解,甚至连被后人称之为数学家之英雄的欧拉在此也犯下难以饶恕的错误。他在得到

1 + x + x2 + x3 + ..... = 1/(1- x)

后,令 x = -1,得出

S=1-1+1-1+1………=1/2!

由此一例,即不难看出当时数学中出现的混乱局面了。问题的严重性在于当时分析中任何一个比较细致的问题,如级数、积分的收敛性、微分积分的换序、高阶微分的使用以及微分方程解的存在性……都几乎无人过问。尤其到十九世纪初,傅立叶理论直接导致了数学逻辑基础问题的彻底暴露。这样,消除不谐和音,把分析重新建立在逻辑基础之上就成为数学家们迫在眉睫的任务。到十九世纪,批判、系统化和严密论证的必要时期降临了。

图为柯西

使分析基础严密化的工作由法国著名数学家柯西迈出了第一大步。柯西于1821年开始出版了几本具有划时代意义的书与论文。其中给出了分析学一系列基本概念的严格定义。如他开始用不等式来刻画极限,使无穷的运算化为一系列不等式的推导。这就是所谓极限概念的“算术化”。后来,德国数学家魏尔斯特拉斯给出更为完善的我们目前所使用的“ε-δ ”方法。另外,在柯西的努力下,连续、导数、微分、积分、无穷级数的和等概念也建立在了较坚实的基础上。不过,在当时情况下,由于实数的严格理论未建立起来,所以柯西的极限理论还不可能完善。

柯西之后,魏尔斯特拉斯、戴德金、康托尔各自经过自己独立深入的研究,都将分析基础归结为实数理论,并于七十年代各自建立了自己完整的实数体系。魏尔斯特拉斯的理论可归结为递增有界数列极限存在原理;戴德金建立了有名的戴德金分割;康托尔提出用有理“基本序列”来定义无理数。1892年,另一个数学家创用“区间套原理”来建立实数理论。由此,沿柯西开辟的道路,建立起来的严谨的极限理论与实数理论,完成了分析学的逻辑奠基工作。数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。重建微积分学基础,这项重要而困难的工作就这样经过许多杰出学者的努力而胜利完成了。微积分学坚实牢固基础的建立,结束了数学中暂时的混乱局面,同时也宣布了第二次数学危机的彻底解决。

罗素悖论与第三次数学危机

十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”

图为康托尔

可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。

罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。

图为罗素

其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。

危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。

以上简单介绍了数学史上由于数学悖论而导致的三次数学危机与度过,从中我们不难看到数学悖论在推动数学发展中的巨大作用。有人说:“提出问题就是解决问题的一半”,而数学悖论提出的正是让数学家无法回避的问题。它对数学家说:“解决我,不然我将吞掉你的体系!”正如希尔伯特在《论无限》一文中所指出的那样:“必须承认,在这些悖论面前,我们目前所处的情况是不能长期忍受下去的。人们试想:在数学这个号称可靠性和真理性的模范里,每一个人所学的、教的和应用的那些概念结构和推理方法竟会导致不合理的结果。如果甚至于数学思考也失灵的话,那么应该到哪里去寻找可靠性和真理性呢?”悖论的出现逼迫数学家投入最大的热情去解决它。而在解决悖论的过程中,各种理论应运而生了:第一次数学危机促成了公理几何与逻辑的诞生;第二次数学危机促成了分析基础理论的完善与集合论的创立;第三次数学危机促成了数理逻辑的发展与一批现代数学的产生。数学由此获得了蓬勃发展,这或许就是数学悖论重要意义之所在吧。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2007-05-12
关于设想的东西,有一个略为类似的谬误。海拉司断言,他能够设想一座房子,是谁也不感知、不在任何心中的。费罗诺斯回驳说,凡海拉司所设想的东西,总在他自己心中,所以那座假想的房子归根到底还是属于心的。海拉司本该这样回答:"我说的不是我在心中有房子的心像;我讲我能够设想一座谁也不感知的房子,这时我实在说的是我能够理解'有一座谁也不感知的房子'这个命题,或更好不如说'有一座谁也不感知、谁也不设想的房子'这个命题。"这个命题完全由可理解的词构成,而且各词是正确地组合在一起的。这命题是真命题或是假命题,我不知道;但是我确实相信决不能指明它是自相矛盾的。有些极类似的命题能够证明。例如:二整数相乘这种乘法的可能数目是无限的,因此有若干个从来也没想到过。贝克莱的议论假使正确,会证明不可能有这种事。

这里包含的谬误是一个很常见的谬误。我们用由经验得来的概念,能够构成关于一些"类"的命题,类中的分子一部分或全部是未被经验到的。举个什么十分寻常的概念,譬如"小石子"吧;这是一个来自知觉的经验概念。但是并不见得一切小石子都被感知到,除非我们把被感知这件事实包括在我们的"小石子"的定义中。只要我们不这样做,"未被感如的小石子"这个概念在逻辑上就无可非议,尽管要感知这概念的一个实例照逻辑讲是不可能的。

议论概括说来如下。贝克莱讲:"可感对象必是可感觉的。

甲是可感对象。所以甲必是可感觉的。"但是,假如"必"字指逻辑必然性,那么甲如果·必是可感对象,这议论才站得住。

这议论并不证明,从甲是可感觉的这个性质以外甲的其它性质能推出甲是可感觉的。例如,它并不证明,与我们所见的颜色本质上就区分不开的颜色不可以不被看见而存在。我们根据生理上的理由尽可相信没这种颜色存在,但是这种理由是经验性的;就逻辑而论,没有理由说,不存在眼睛和脑子,就没有颜色。

现在来谈贝克莱的经验论据。首先,把经验论据和逻辑论据撮合一起,就是有弱点的表示,因为后者如果站得住,前者便成了多余的。

我假如主张正方形不会是圆的,我并不要引据任何既知城市里的方场没一个是圆的这件事实。不过,由于我们已经否定了逻辑论据,就必须按经验论据的是非曲直考察一下经验论据。

第一个经验论据是个奇怪的论据:那是说热不会是在对象中,因为"最强炽的热〔是〕极大的苦痛",而我们无法设想"任何无知觉的东西能够有苦痛或快乐"。"苦痛"一词有双重意义,贝克莱正利用这点。这词可以指某个感觉的苦痛的性质,也可以指具有这种性质的那个感觉。我们说一条折断的腿很痛,并不暗含着这条腿在心中的意思;同样,容或是热·引·起苦痛,因而我们说热·是苦痛时应该指的也无非是这个意思。所以,贝克莱的这种论据是个蹩脚论据。

关于冷、热的手放进温水的议论,严格说来,恐怕只证明在该实验中我们所感知的不是热和冷,而是较热和较冷。丝毫也不证明这些事情是主观的。

关于滋味,又重复快乐和苦痛论证:甜是快乐,苦是苦痛,因此两者都是属于心的。并且他又极力说,人在健康时觉甜的东西,生病时也许觉苦。关于气味,使用了非常类似的论据:因为气味不是快感的就是不快的,"它不能存在于有知觉的实体即心以外的任何实体中。"在这里,在所有的地方,贝克莱都假定,不是物质所固有的东西,必是心灵实体固有的,任何东西也不能既是心灵的又是物质的。

关于声音的论证,是个adhominem(对人)论证。海拉司说声音"实在地"是空气里的运动,而费罗诺斯反驳说,运动能够看见、触到,却不能听见,因此"实在的"声音是听不见的。这不好算公正的议论,因为运动的知觉表象依贝克莱讲也和其它知觉表象一样是主观的东西。海拉司所要求的运动总得是不被感知的和不能感知的。然而,这论证倒也指明,听见的那种声音跟物理学看作是声音原因的空气运动不能当成一回事,就这点来说,论证还是正确的。

海拉司放弃了次性质之后,还不愿放弃·主性质,即广延性、形相、充实性、重量、运动、和静止。议论当然集中在广延性和运动上。费罗诺斯说,假如东西有实在的大小,同一个东西决不会在同时大小不同,然而东西离近时比离远时显得大。假如运动实际在对象里,何至于同一个运动可以在一个人看来快,另一个人看来慢?我以为,应该承认这种议论证明被感知空间的主观性。但这种主观性是物理的主观性:

对照相机来讲也同样说得过,因此并不证明形状是"属于心的"。在第二篇对话中,费罗诺斯把以前进行的讨论总结成下面的话:"除各种神灵以外,我们所认识的或设想的一切都是我们自己的表象。"当然,他不该把神灵算作例外,因为认识神灵和认识物质完全一样,是不可能的。事实上,这两种情形的论据几乎相同。

现在试谈一谈由贝克莱开创的那种议论,我们能得出什么肯定的结论。

我们所认识的东西是可感性质的簇:例如,一张桌子是由它的外观形状、软硬、叩时发的响声和气味(假设有气味)组成的。这些性质在经验中有某种邻接,以致常识把它们看成属于同一个"东西",但是"东西"或"实体"概念在感知到的各种性质之外丝毫未添加什么旁的性质,所以是不必要的。到此为止,我们一直站在坚固的基础上。

然而现在我们必须自问,所谓"感知"指什么意思。费罗诺斯主张,谈到可感物,其实在性就在于它被感知;但是他并没说出他所讲的知觉是什么意义。有一个理论认为知觉是主体与知觉对象间的关系,他是否定的。既然他以为"自我"是实体,他本来满可以采纳这一说;可是,他决定不要它。对否定"实体的自我"观念的人说来,这个理论是讲不通的。那么,把某物叫做"知觉对象",指什么意思?除说该某物存在以外,还有什么别的意义吗?我们能不能把贝克莱的断语倒过来,不说实在性在于被感知,而说被感知就在于是实在的?不管怎样,总之贝克莱认为存在不被感知的东西这件事照逻辑讲是可能的,因为他认为某些实在的东西,即精神实体,是不被感知的。于是看来很明白,我们讲某事件被感知到,除指它存在以外,还指别的意思。
第2个回答  2007-05-09
1734年,贝克莱以“渺小的哲学家”之名出版了一本标题很长的书《分析学家;或一篇致一位不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘、信仰的要点有更清晰的表达,或更明显的推理》。在这本书中,贝克莱对牛顿的理论进行了攻击。例如他指责牛顿,为计算比如说 x2 的导数,先将 x 取一个不为0的增量 Δx ,由 (x + Δx)2 - x2 ,得到 2xΔx + (Δx2) ,后再被 Δx 除,得到 2x + Δx ,最后突然令 Δx = 0 ,求得导数为 2x 。这是“依靠双重错误得到了不科学却正确的结果”。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。

数学史上把贝克莱的问题称之为“贝克莱悖论”。笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式逻辑而言,这无疑是一个矛盾。这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。
第3个回答  2007-05-09
“我有一个观点:人在梦中,会认为一切都是实在的、存在的,而实际上是虚幻的、意识的东西”
我认为这不对,有的人会了解自己在做梦,比如说我。有一次,我做梦自己在小便,但我脑子里再想我不能想,不然现实中也会小,会尿床的(虽然不雅,还是说下啊)。不过我也挺对这感兴趣的,会关注下去的。
第4个回答  2007-05-09
人在梦中,会认为一切都是实在的、存在的,而实际上是虚幻的、意识的东西。但是,谁能证明我们活在这个世界上不是虚幻的?也就是说谁能证明我们不是在做梦或类似做梦的活着?
所以问题有三;
1.存在即是被感知的谬误是什么?
2.罗素认为贝克莱观点的谬误在哪里?
3.如何反驳我的观点?
PS:举“你没有感知到父母,难道父母就不存在吗?”这个论据不能反驳这句话。
三个问题中必答第三问。
最佳答案不仅得到所付分值,另外我将追加我所能追加的最大分值。前提:回答的答案必须能够清楚的使我明白,谢绝复制粘贴。
恐怕我会进行问题补充,希望能有耐心!
真诚的感谢各位的回答!!
相似回答