如题所述
f'(lnx)=(1+x)lnx
x.d/dx f(lnx) = (1+x)lnx
f(lnx)
=∫ [(1+x)lnx/x] dx
=∫ lnx dx + ∫ [lnx/x] dx
=xlnx - ∫ dx + (1/2)(lnx)^2
=xlnx -x + (1/2)(lnx)^2 +C
ie
f(x) = xe^x - e^x +(1/2)x^2 +C