睡能详细解释下数形结合思想?

如题所述

数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.●难点磁场�1.曲线y=1+ (–2≤x≤2)与直线y=r(x–2)+4有两个交点时,实数r的取值范围 .2.设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围.●案例探究�[例1]设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x<sup>2</sup>,且x∈A },若C B,求实数a的取值范围.命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目.知识依托:解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C.进而将C B用不等式这一数学语言加以转化.错解分析:考生在确定z=x2,x∈[–2,a]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a<–2这一种特殊情形.技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决.解:∵y=2x+3在[–2, a]上是增函数∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3}作出z=x2的图象,该函数定义域右端点x=a有三种不同的位置情况如下:①当–2≤a≤0时,a2≤z≤4即C={z|z<sup>2</sup>≤z≤4}要使C B,必须且只须2a+3≥4得a≥ 与–2≤a<0矛盾.②当0≤a≤2时,0≤z≤4即C={z|0≤z≤4},要使C B,由图可知:必须且只需 解得 ≤a≤2③当a>2时,0≤z≤a2,即C={z|0≤z≤a<sup>2</sup>},要使C B必须且只需解得2<a≤3④当a<–2时,A= 此时B=C= ,则C B成立.综上所述,a的取值范围是(–∞,–2)∪[ ,3].[例2]已知acosα+bsinα=c, acosβ+bsinβ=c(ab≠0,α–β≠kπ, k∈Z)求证:.命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目.知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A、B两点坐标特点知其在单位圆上.错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.技巧与方法:善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几何意义,这样才能巧用数形结合方法完成解题.证明:在平面直角坐标系中,点A(cosα,sinα)与点B(cosβ,sinβ)是直线l:ax+by=c与单位圆x2+y2=1的两个交点如图.从而:|AB|2=(cosα–cosβ)2+(sinα–sinβ)2=2–2cos(α–β)又∵单位圆的圆心到直线l的距离 由平面几何知识知|OA|2–( |AB|)2=d2即∴ .●锦囊妙计�应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图(2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象(4)方程(多指二元方程)及方程的曲线以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.●歼灭难点训练�一、选择题1.(★★★★)方程sin(x– )= x的实数解的个数是( )A.2 B.3 C.4 D.以上均不对2.(★★★★★)已知f(x)=(x–a)(x–b)–2(其中a<b ,且α、β是方程f(x)=0的两根(α<β ,则实数a、b、α、β的大小关系为( )A.α<a<b<β B.α<a<β<bC.a<α<b<β D.a<α<β<b二、填空题3.(★★★★★)(4cosθ+3–2t)2+(3sinθ–1+2t)2,(θ、t为参数)的最大值是 .4.(★★★★★)已知集合A={x|5–x≥ },B={x|x<sup>2</sup>–ax≤x–a},当A B时,则a的取值范围是 .三、解答题5.(★★★★)设关于x的方程sinx+ cosx+a=0在(0,π)内有相异解α、β.(1)求a的取值范围;(2)求tan(α+β)的值.6.(★★★★)设A={(x,y)|y= ,a>0},B={(x,y)|(x–1)2+(y–3)2=a2,a>0},且A∩B≠ ,求a的最大值与最小值.7.(★★★★)已知A(1,1)为椭圆 =1内一点,F1为椭圆左焦点,P为椭圆上一动点.求|PF1|+|PA|的最大值和最小值.8.(★★★★★)把一个长、宽、高分别为25 cm、20 cm、5 cm的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为多少? 参 考 答 案●难点磁场1.解析:方程y=1+ 的曲线为半圆,y=r(x–2)+4为过(2,4)的直线.答案:( ]2.解法一:由f(x)>a,在[–1,+∞)上恒成立 x2–2ax+2–a>0在[–1,+∞)上恒成立.考查函数g(x)=x2–2ax+2–a的图象在[–1,+∞]时位于x轴上方.如图两种情况:不等式的成立条件是:(1)Δ=4a2–4(2–a)<0 a∈(–2,1)(2) a∈(–3,–2 ,综上所述a∈(–3,1).解法二:由f(x)>a x2+2>a(2x+1)令y1=x2+2,y2=a(2x+1),在同一坐标系中作出两个函数的图象.如图满足条件的直线l位于l1与l2之间,而直线l1、l2对应的a值(即直线的斜率)分别为1,–3,故直线l对应的a∈(–3,1).●歼灭难点训练一、1.解析:在同一坐标系内作出y1=sin(x– )与y2= x的图象如图.答案:B2.解析:a,b是方程g(x)=(x–a)(x–b)=0的两根,在同一坐标系中作出函数f(x)、g(x)的图象如图所示: 答案:A二、3.解析:联想到距离公式,两点坐标为A(4cosθ,3sinθ),B(2t–3,1–2t)点A的几何图形是椭圆,点B表示直线.考虑用点到直线的距离公式求解.答案: 4.解析:解得A={x|x≥9或x≤3},B={x|(x–a)(x–1)≤0},画数轴可得.答案:a>3三、5.解:①作出y=sin(x+ )(x∈(0,π))及y=– 的图象,知当|– |<1且– ≠时,曲线与直线有两个交点,故a∈(–2,– )∪(– ,2).②把sinα+ cosα=–a,sinβ+ cosβ=–a相减得tan ,故tan(α+β)=3.6.解:∵集合A中的元素构成的图形是以原点O为圆心, a为半径的半圆;集合B中的元素是以点O′(1, )为圆心,a为半径的圆.如图所示∵A∩B≠ ,∴半圆O和圆O′有公共点.显然当半圆O和圆O′外切时,a最小a+a=|OO′|=2,∴amin=2 –2当半圆O与圆O′内切时,半圆O的半径最大,即 a最大.此时 a–a=|OO′|=2,∴amax=2 +2.7.解:由 可知a=3,b= ,c=2,左焦点F1(–2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a–|PF2|=6–|PF2|,∴|PF1|+|PA|=6–|PF2|+|PA|=6+|PA|–|PF2|如图:由||PA|–|PF2||≤|AF2|= 知– ≤|PA|–|PF2|≤ .当P在AF2延长线上的P2处时,取右“=”号;当P在AF2的反向延长线的P1处时,取左“=”号.即|PA|–|PF2|的最大、最小值分别为 ,– .于是|PF1|+|PA|的最大值是6+ ,最小值是6– .8.解:本题实际上是求正方形窗口边长最小值.由于长方体各个面中宽和高所在的面的边长最小,所以应由这个面对称地穿过窗口才能使正方形窗口边长尽量地小.如图:设AE=x,BE=y,则有AE=AH=CF=CG=x,BE=BF=DG=DH=y∴ ∴ .
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-10-26
“数”和“形”是数学的两个柱石,所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分利用这种结合,探索解决问题的思路,从而使问题得以解决的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 在运用数形结合思想分析和解决问题时,有几点需要注意:第一.要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二.恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三.正确确定参数的取值范围。 (附)1. 分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。 2. 所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。 3. 分类原则:分类的对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。 4. 分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。 5. 含参数问题的分类讨论是常见题型。 6. 注意简化或避免分类讨论。
第2个回答  2013-10-26
数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:
  一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
  二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
  三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
  四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。
  五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。
  六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。
  七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。
  八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。本回答被网友采纳
相似回答