Flink 端对端一致性

如题所述

第1个回答  2022-06-11

Flink的检查点和恢复机制定期的会保存应用程序状态的一致性检查点。在故障的情况下,应用程序的状态将会从最近一次完成的检查点恢复,并继续处理。尽管如此,可以使用检查点来重置应用程序的状态无法完全达到令人满意的一致性保证。相反,source和sink的连接器需要和Flink的检查点和恢复机制进行集成才能提供有意义的一致性保证。

对于流处理器内部来说,所谓的状态一致性,其实就是我们所说的计算结果要保证准确。 一条数据不应该丢失,也不应该重复计算 在遇到故障时可以恢复状态,恢复以后的重新计算,结果应该也是完全正确的。

Flink的 checkpoint机制和故障恢复机制给Flink内部提供了精确一次的保证,需要注意的是,所谓精确一次并不是说精确到每个event只执行一次,而是每个event对状态(计算结果)的影响只有一次。

目前我们看到的一致性保证都是由流处理器实现的,也就是说都是在 Flink 流处理器内部保证的;而在真实应用中,流处理应用除了流处理器以外还包含了数据源(例如 Kafka)和输出到持久化系统

端到端的一致性保证,意味着结果的正确性贯穿了整个流处理应用的始终;每一个组件都保证了它自己的一致性

不同Source 和Sink的一致性保证

整个端到端的一致性级别取决于所有组件中一致性最弱的组件

Fink的检查点和恢复机制和可以重置读位置的source连接器结合使用,可以保证应用程序不会丢失任何数据。尽管如此,应用程序可能会发出两次计算结果,因为从上一次检查点恢复的应用程序所计算的结果将会被重新发送一次(一些结果已经发送出去了,这时任务故障,然后从上一次检查点恢复,这些结果将被重新计算一次然后发送出去)。所以,可重置读位置的source和Flink的恢复机制不足以提供端到端的恰好处理一次语义,即使应用程序的状态是恰好处理一次一致性级别。

端到端恰好处理一次语义一致性的应用程序需要特殊的sink连接器。sink连接器可以在不同的情况下使用两种技术来达到恰好处理一次一致性语义: 幂等性写入和事务性写入

所谓幂等操作,是说一个操作,可以重复执行很多次,但只导致一次结果更改,也就是说,后面再重复执行就不起作用了

必须保证在从检查点恢复以后,它将会覆盖之前已经写入的结果。

从Flink程序sink到的key-value存储中读取数据的应用,在Flink从检查点恢复的过程中,可能会看到不想看到的结果。当重播开始时,之前已经发出的计算结果可能会被更早的结果所覆盖(因为在恢复过程中)。所以,一个消费Flink程序输出数据的应用,可能会观察到时间回退,例如读到了比之前小的计数。

构建的事务对应着 checkpoint,等到 checkpoint 真正完成的时候,才把所有对应的结果写入 sink 系统中

事务性的方法将不会遭受幂等性写入所遭受的重播不一致的问题。但是,事务性写入却带来了延迟,因为只有在检查点完成以后,我们才能看到计算结果。

Flink提供了两种构建模块来实现事务性sink连接器:write-ahead-log( WAL ,预写式日志)sink和 两阶段提交sink

把结果数据先当成状态保存,然后在收到 checkpoint 完成的通知时,一次性写入 sink 系统

简单易于实现,由于数据提前在状态后端中做了缓存,所以无论什么 sink 系统,都能用这种方式一批搞定

DataStream API 提供了一个模板类:GenericWriteAheadSink,来实现这种事务性 sink

对于每个 checkpoint,sink 任务会启动一个事务,并将接下来所有接收的数据添加到事务里

然后将这些数据写入外部 sink 系统,但不提交它们 —— 这时只是“预提交”

当它收到 checkpoint 完成的通知时,它才正式提交事务,实现结果的真正写入

这种方式真正实现了 exactly-once,它需要一个提供事务支持的外部 sink 系统。

Flink 提供了 TwoPhaseCommitSinkFunction 接口。

外部 sink 系统必须提供事务支持,或者 sink 任务必须能够模拟外部系统上的事务

在 checkpoint 的间隔期间里,必须能够开启一个事务并接受数据写入

在收到 checkpoint 完成的通知之前,事务必须是“等待提交”的状态。在故障恢复的情况下,这可能需要一些时间。如果这个时候sink系统关闭事务(例如超时了),那么未提交的数据就会丢失

sink 任务必须能够在进程失败后恢复事务

提交事务必须是 幂等操作

使用flink+kafka来实现一个端对端一致性保证,source -> transform -> sink

图解Exactly-Once 两阶段提交

Exactly-once 两阶段提交1:

JobManager 协调各个 TaskManager 进行 checkpoint 存储 checkpoint保存在 StateBackend中,默认StateBackend是内存级的,也可以改为文件级的进行持久化保存

Exactly-once 两阶段提交2:

当开启了checkpoint ,JobManager 会将检查点分界线(barrier)注入数据流 barrier会在算子间传递下去

每个算子会对当前的状态做个快照,保存到状态后端

checkpoint 机制可以保证内部的状态一致性

每个内部的 transform 任务遇到 barrier 时,都会把状态存到 checkpoint 里

sink 任务首先把数据写入外部 kafka,这些数据都属于预提交的事务;

遇到 barrier 时,把状态保存到状态后端,并开启新的预提交事务

当所有算子任务的快照完成,也就是这次的 checkpoint 完成时,JobManager 会向所有任务发通知,确认这次 checkpoint 完成

sink 任务收到确认通知,正式提交之前的事务,kafka 中未确认数据改为“已确认”

总结 Exactly-once 两阶段提交步骤

在使用kafka011 sink 时注意的点:

1.为了保证事务特性,在使用其他程序去消费我们flink sink 数据的kafka时,这个consumer需要设置了 isolation.level = read_committed ,那么它只会读取已经提交了的消息。

2.Checkpoint超时时间 必需大于 kafka 提交事务时间。

假如checkpoint失败时间高于 kafka事务等待时间,比如,设置了一个checkpoint最多等待10分钟,10分钟后会失败这个checkpoint的保存。而kafka 的事务只能等待5分钟,5分钟后把uncommitted的事务关掉。这个时候6分钟checkpoint成功了,但是对应kafka数据的事务已经失败。这样就无法保证Exactly-once的实现

相似回答
大家正在搜