概率学问题

n个座位依次从一号编到n号,将1至n号的n个号码分给n个人,每人一个号码,这n个人随意地坐到座位上,求至少有一个人手里的号码恰好与座位号码相同的概率,且当n很大时,给出这个概率的近似值。(求详细过程及讲解)

第1个回答  2012-09-18
满意答案应该是错的吧?
解题思路:题目要求是至少有1个人坐对位置,那么先找对立面(所有人都坐错位置的概率),然后再1-这个对立面的概率就可以了。
所有人都坐错位置(1号不能坐1号,2号不能坐2号...n号不能坐n号)的概率应该为:1/C(1,n)*1/C(2.n)*1/C(3,n)*...1/C(n,n)=1/n;
所以答案应该是1-1/n。
而上面的答案错误在于没有意识到这题目中根本不可能有单数坐错位置的人。即坐错位置一定是成双的,也就是说1,2,3....n中是有很多不存在的。
验证:当n=2,只有2种坐法,至少1个坐对的是1种可能,50%的概率。
当n=3的时候,只有6种坐法,分别是1个坐对的3种可能,3个坐对的1种,概率2/3.
当n=4的时候,一共12种做法,至少坐对1个的可能有9种可能。概率3/4。
当n无穷大时,概率为1,即100%至少1个坐对位置。
第2个回答  2011-09-10
首先N个人随便选一个座位,有N!种可能.
题目中说”至少有一个人坐对的概率是多少 ?”那么可以1人、2人、....N人.
1人:C(1,n)*〔1-1/1!+1/2!-1/3!+1/4!-...1/(n-1)!〕;1
2人:C(2,n)*〔1-1/1!+1/2!-1/3!+1/4!-...1/(n-2)!〕;2
.
.
.
n人:1种;n
然后,把1,2,3..加起来等于:1-1/2+1/(2*3)-1/(2*3*4)+……(-1)^(n-1)/(n!) ≈ 1-e^-1

上式用到了错排公式,用容斥原理证明如下:
正整数1、2、3、……、n的全排列有n!种,其中第k位是k的排列有(n-1)!,当k取1、2、3、……、n时,共有n*(n-1)!种排列,由于是错排,这些排列应排除,但是此时把同时有两个数不错排的排列多排除了一次,应补上;在补上时,把同时有三个数不错排的排列多补上了一次,应排除;……;继续这一过程,得到错排的排列种数为
M(n)=n!-n!/1!+n!/2!-n!/3!+…+(-1)^n*n!/n!=∑(k=2~n) (-1)^k*n!/k!
即M(n)=n![1/0!-1/1!+1/2!-1/3!+1/4!+..+(-1)^n/n!]

参考资料:http://zhidao.baidu.com/question/140551362.html

本回答被提问者采纳
第3个回答  2011-09-10
1/N,
当N很大时候,概率近似值趋向于无穷小。
相似回答