第1个回答 2020-01-03
运算律包括交换律、结合律、分配律
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
第2个回答 2011-09-17
我全还给老师了,可老师却没把学费还给我。。。 加法交换律 a b=b a 加法结合律(a b) c=a (b c) 乘法交换律ab=ba 乘法结合律(ab)c=a(
第3个回答 2020-05-20
运算律都有交换律、结合律、分配律
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
第4个回答 2020-07-18
运算律包括交换律、结合律、分配律
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
第5个回答 2020-05-09
扩展资料
运算律的意义有:
1、实现由具体到抽象的归纳
通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律,这个过程属于由具体到抽象、由特殊到一般的归纳,体现了合情推理的基本特点。
2、运算定义和运算律是探索相关计算方法的依据。
把运算方法所要求的操作程序和要点用相对准确、规范且比较容易理解的文本语言表述出来,或者将当前运算归结为学生早先已经掌握的相关运算,就是所谓的“运算法则”。
3、运算律是数与代数部分的重要知识,应用运算律进行简便计算有助于学生不断提高运算能力;从隐性的方面看,通过运算律的教学,有助于学生丰富和加深对运算本身的理解,感受抽象、推理、模型等基本数学思想,同时也能获得一些对心智成长十分有益的感悟。本回答被网友采纳