数据结构——图graph(基础概念)

如题所述

第1个回答  2022-06-15
【各种东拼西凑来的】

图(Graph)是由顶点和连接顶点的边构成的离散结构。在计算机科学中,图是最灵活的数据结构之一,很多问题都可以使用图模型进行建模求解。例如:生态环境中不同物种的相互竞争、人与人之间的社交与关系网络、化学上用图区分结构不同但分子式相同的同分异构体、分析计算机网络的拓扑结构确定两台计算机是否可以通信、找到两个城市之间的最短路径等等。

图的结构很简单,就是由顶点$V$集和边$E$集构成,因此图可以表示成$G=(V, E)$。

注意: 顶点有时也称为节点或者交点,边有时也称为链接。

无向图

我们可以说这张图中,有点集$V=\{1, 2, 3, 4, 5, 6\}$,边集$E=\{(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (4, 5), (4, 6)\}$。在无向图中,边$(u, v)$和边$(v, u)$是一样的,因此只要记录一个就行了。简而言之,对称。

有向图

也很好理解,就是加上了方向性,顶点$(u, v)$之间的关系和顶点$(v,u)$之间的关系不同,后者或许不存在。例如,地图应用中必须存储单行道的信息,避免给出错误的方向。

加权图 :

权:与图的边或弧相关的数叫做权。

与加权图对应的就是无权图,或叫等权图。如果一张图不含权重信息,我们就认为边与边之间没有差别。不过,具体建模的时候,很多时候都需要有权重,比如对中国重要城市间道路联系的建模,总不能认为从北京去上海和从北京去广州一样远(等权)。

还有很多细化的概念,比如:无向图中,任意两个顶点间都有边,称为 无向完全图 ;加权图起一个新名字,叫 网(network) ……然而,如无必要,毋增实体。

邻接(adjacency) :邻接是 两个顶点之间 的一种关系。如果图包含$(u,v)$,则称顶点$v$与顶点$u$邻接。当然,在无向图中,这也意味着顶点$u$与顶点$v$邻接。

关联(incidence) :关联是 边和顶点之间 的关系。在有向图中,边$(u,v)$从顶点$u$开始关联到$v$,或者相反,从$v$关联到$u$。注意,有向图中,边不一定是对称的,有去无回是完全有可能的。细化这个概念,就有了顶点的 入度(in-degree) 和 出度(out-degree) 。无向图中,顶点的度就是与顶点相关联的边的数目,没有入度和出度。在有向图中,我们以图1-2为例,顶点10有2个入度,$3\rightarrow10$,$11\rightarrow10$,但是没有从10指向其它顶点的边,因此顶点10的出度为0。

路径(path) :依次遍历顶点序列之间的边所形成的轨迹。注意,依次就意味着有序,先1后2和先2后1不一样。

简单路径 : 没有重复顶点的路径称为简单路径。说白了,这一趟路里没有出现绕了一圈回到同一点的情况,也就是没有 环 。

环/回路 :包含相同的顶点两次或者两次以上。图1-3中的顶点序列$<1,2,4,3,1>$,1出现了两次,当然还有其它的环,比如$<1,4,3,1>$。

简单回路/简单环: 除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路

无环图 :没有环的图,其中, 有向无环图 有特殊的名称,叫做 DAG(Directed Acyline Graph) (最好记住,DAG具有一些很好性质,比如很多动态规划的问题都可以转化成DAG中的最长路径、最短路径或者路径计数的问题)。

两个连通分支:

连通的 :无向图中每一对不同的顶点之间都有路径。如果这个条件在有向图里也成立,那么就是 强连通 的。

连通分量 :无向图中的极大连通子图。

两点强连通:在有向图G中,如果两点互相可达

强连通图: 如果有向图G的每两个顶点都强连通(任意两点互相可达),称G是一个 强连通图 。

强连通分量: 非强连通有向图的极大强连通子图,称为强连通 分量 (strongly connected components)。

关节点(割点) :某些特定的顶点对于保持图或连通分支的连通性有特殊的重要意义。如果 移除某个顶点 将使图或者分支 失去连通性 ,则称该顶点为 关节点 。(在某图中,若删除顶点V以及V相关的边后,图的一个连通分量分割为两个或两个以上的连通分量,则称顶点V为该图的一个关节点)。

桥(割边) :和关节点类似,删除一条边,就产生比原图更多的连通分支的子图,这条边就称为 割边 或者 桥 。

双连通图 :在无向连通图中,如果删除该图的任何一个结点都不能改变该图的连通性,则该图为双连通的无向图。个人理解就是一个双连通图没有割点,没有桥的图。

1.2 一些有趣的图概念

这一部分属于图论的内容,基础图算法不会用到,但是我觉得挺有意思的,小记如下。【这部分我没看,照搬过来了】

同构 4 :图看起来结构不一样,但它是一样的。假定有$G_1$和$G_2$,那么你只要确认对于$G_1$中的所有的两个 相邻点 $a$和$b$,可以通过某种方式$f$映射到$G_2$,映射后的两个点$f(a)$、$f(b)$也是相邻的。换句话说,当两个简单图同构时,两个图的顶点之间保持相邻关系的一一对应。

图1-7就展示了图的同构,这里顶点个数很少判断图的同构很简单。我们可以把v1看成u1,自然我们会把u3看出v3。用数学的语言就是$f(u_1)=v_1$,$f(u_3)=v_3$。u1的另外一个连接是到u2,v1的另外一个连接是到v4,不难从相邻顶点的关系验证$f(u_2)=v_4$,$f(u_4)=v_2$。

欧拉回路(Euler Circuit) :小学数学课本上的哥尼斯堡七桥问题,能不能从镇里的某个位置出发 不重复的经过所有桥(边)并且返回出发点 。这也就小学的一笔画问题,欧拉大神解决里这个问题,开创了图论。结论很简单:至少2个顶点的连通多重图存在欧拉回路的充要条件是 每个顶点的度都是偶数 。证明也很容易,大家有兴趣可以阅读相关资料。结论也很好理解,从某个起点出发,最后要回起点,中间无论路过多少次起点,都会再次离开,进、出的数目必然相等,故一定是偶数。

哈密顿回路(Hamilton Circuit) :哈密顿回路条件就比欧拉回路严格一点, 不能重复经过点 。你可能会感到意外,对于欧拉回路,我们可以轻而易举地回答,但是 我们却很难解决哈密顿回路问题,实际上它是一个NP完全问题 。这个术语源自1857年爱尔兰数学家威廉·罗万·哈密顿爵士发明的智力题。哈密顿的智力题用到了木质十二面体(如图1-8(a)所示,十二面体有12个正五边形表面)、十二面体每个顶点上的钉子、以及细线。十二面体的20个顶点用世界上的不同城市标记。智力题要求从一个城市开始,沿十二面体的边旅行,访问其他19个城市,每个恰好一次,最终回到第一个城市。

因为作者不可能向每位读者提供带钉子和细线的木质十二面体,所以考虑了一个 等价的问题 :对图1-8(b)的图是否具有恰好经过每个顶点一次的回路?它就是对原题的解,因为这个平面图 同构 于十二面体顶点和边。

著名的 旅行商问题(TSP) 要求旅行商访问一组城市所应当选取的最短路线。这个问题可以归结为求完全图的哈密顿回路,使这个回路的边的权重和尽可能的小。同样,因为这是个NP完全问题,最直截了当的方法就检查所有可能的哈密顿回路,然后选择权重和最小的。当然这样效率几乎难以忍受,时间复杂度高达$O(n!)$。在实际应用中,我们使用的启发式搜索等 近似算法 ,可以完全求解城市数量上万的实例,并且甚至能在误差1%范围内估计上百万个城市的问题。

关于旅行商问题目前的研究进展,可以到 http://www.math.uwaterloo.ca/...

1.3 小结

以为可以一带而过,结果写了那么多。也没什么好总结的了,当然这些也至是图论概念的一小部分,还有一些图可能我们以后也会见到,比如顺着图到网络流,就会涉及二分图,不过都很好理解,毕竟有图。

1、数组(邻接矩阵)

2、邻接表

3、十字链表

4、邻接多种表
相似回答