第3个回答 2021-02-21
由向量a,b的夹角公式:cos<a,b>=a·b/∣a∣·∣b∣知道,
要计算①a·b-?,②∣a∣=?,③∣b∣=?
解答第二个空的:
∵cos<a,b>=a·b/∣a∣·∣b∣=a·b/4=1/2
∴a·b=2
(a-b)·b=a·b-b²=a·b-∣b∣²=2-4=-2
∣a-b∣=√(a²+b²-2ab)=√(∣a∣²+∣b∣²-2ab)=√(4+4-4)=2
∵cos<a-b,b>=(a-b)·b/∣a-b∣∣b∣=-2/2x2=-1/2
∴<a-b,b>=120º,
所以向量a-b与b的夹角为120º。