P(AB)=P(A)P(B/A)=P(B)P(A/B)
条件概率表示为:P(A|B),读作“在B的条件下A的概率”。条件概率可以用决策树进行计算。条件概率的谬论是假设 P(A|B) 大致等于 P(B|A)。
数学家John Allen Paulos 在他的《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。
扩展资料:
1、统计独立性
当且仅当两个随机事件A与B满足
P(A∩B)=P(A)P(B)
的时候,它们才是统计独立的,这样联合概率可以表示为各自概率的简单乘积。
同样,对于两个独立事件A与B有
P(A|B)=P(A)
以及
P(B|A)=P(B)
换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。
2、互斥性
当且仅当A与B满足
P(A∩B)=0
且P(A)≠0,P(B)≠0
的时候,A与B是互斥的。
因此,
P(A|B)=0
P(B|A)=0
换句话说,如果B已经发生,由于A不能和B在同一场合下发生,那么A发生的概率为零;同样,如果A已经发生,那么B发生的概率为零。