怎么把被测信号连接频谱分析仪

如题所述

第1个回答  2022-10-12
1. 如何使用频谱分析仪
1.指导

(1)AT5010频谱分析仪测量幅度为:-100dBm--+13dBm,即:信号强度达到最高的一条水平刻度线时,此信号的幅度为-27dBm,每下一大格减10dBm。如果频谱分析仪上的40dB衰减器全按下时,此时最高水平刻度线幅度为+13dBm(-27dBm+40dBm)。

(2)手机有些信号测试点可以直接用高频电缆连接频谱仪进行测量。但有部分测试点因为存在阻抗匹配的问题,不能直接测量,可选用安泰AZ530-H高阻抗探头,探头输入电容为2pF,阻抗极高,可以直接定量测量手机上任何射频信号不会对被测电路有任何影响。AZ530-H高阻抗探头本身有20dB(典型值)的衰减,因此用其作定量测量时,要在其直接读数上加20dB。

2.操作

用频谱分析仪测量手机的射频信号比较方便,例如,测量爱立信T18第二中频信号(6MHz)时,可按以下方法进行。

(1)打开频谱分析仪,调节亮度和聚焦旋钮,使屏幕上显示的光迹清晰。

(2)调节扫频宽度选择按键(SCANWIDTH)按键,使1MHz指示灯亮,表示每格所占频率为1MHz。

(3)调节中心频率粗/细调调节旋钮,使频标位于屏幕中心位置,所指频率为6MHz。

(4)将频谱仪探头外壳与T18电路主板接地点相连,探针插到第二中频滤波器的输出端,在电流表指针摆动时观察频谱仪屏幕上是否有脉冲式图像,正常情况下,当电流表指针摆动时,有脉冲图像出现在6MHz频标位置。

再如,用频谱分析仪测量诺基3310功放输出信号的频谱,可按以下步骤进行测量。

(1)打开频谱分析仪,调节亮度和聚焦旋钮,使屏幕上显示清晰的图像。

(2)调节中心频率粗/细调调节旋钮,使频标位于屏幕中心位置,显示屏显示频率值为900MHz。

(3)调节扫频宽度选择按键(SCANWIDTH)按键,使10MHz指示灯亮,表示每格所占频率为10MHz。

(4)将频谱仪外壳与3310主板接地点相连,控针插到功放块的输出端,并拨打“112”,观察电流表摆动的同时观看频谱仪屏幕上有无脉冲图像,正常情况下,在900MHz频标附近会出现脉冲图像,但幅度会超出屏幕范围,可以按衰减按键,使图像最高点在屏幕范围内。

(5)标记按钮(ONOFF):当标记按钮置于OFF(断)位置时,中心频率(CF)指示器发亮,此时显示器读出的是中心频率,当此开关在ON(通)位置时,标记(MK)指示器发亮,此时显示器读出的是标记的频率,该标记在屏幕上是一个尖峰。

(6)标记旋钮(MARKER):用于调节标记频率。

(7)LED指标灯:闪亮时表示幅度值不正确。这是由于扫频宽度和中频滤波器设置不当而造成幅度降低所致。这种情况可能出现在扫频范围过大时(相对于中频带宽(20kHz),或视频滤波器带宽(4kHz)),若要正确测量,可以不用视频滤波器或者减小扫频宽度
2. 怎样使用频谱分析仪、前置放大器和信号发生器测量噪声系数
只用频谱分析仪和前置放大器,就能作许多噪声系数测量。

只需用频谱分析仪、前置放大器和信号发生器,就能覆盖被测器件的频率。这种方法的精度低于需要经校准噪声源的Y 因素技术,与所关注频率的分析仪幅度精度相当。

具体测量步骤为:1. 把信号发生器和频谱分析仪设置为所测噪声系数的频率,测量器件的增益。把该值标为Gain(D)。

2. 同样方法测量前置放大器增益。把该值标为Gain(P)。

3. 断开频谱分析仪的任何输入,把输入衰减器设置为0dB。前置放大器输入没有任何连接。

把它的输出接到频谱分析仪输入。在作这一连接时,您会看到分析仪显示的平均噪声级的增加。

4. 把被测器件的输入接至其特性阻抗,把输出接到前置放大器输入。此时分析仪显示的噪声级应增加。

5. 把频谱分析仪视频带宽(VBW)设置为分辨率带宽的1%或更低。按标记功能(MKR FCTN)键,然后按Noise Marker On 软键。

把标记放置在所要测噪声系数的频率上。读以dBm/Hz 为单位的标记噪声功率密度读数,把它标为Noise(O)。

6. 然后计算被测器件的噪声系数NFig:NFig = Noise(O) - Gain(D) - Gain(P) + 174 dBm/Hz。
3. 怎样用频谱分析仪测信噪比
首先要了解你测试的信号和噪声的频率范围,以及信号强度是多少。然后看看下面的介绍:

频谱分析仪结构同超外差式接收器有点相似,其工作原理是对输入信号经衰减器直接外加到混频器,可调变的本地振荡器经与CRT 同步的扫瞄产生器产生随时间作线性变化的振荡频率,然后经混频器与输入信号混波降频后的中频信号(IF)再放大、滤波与检波传送到CRT 的垂直方向板,因此在CRT 的纵轴显示信号频率和振幅的对应关系。

滤波器频宽常常会影响信号反应,因此滤波器的特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能是量测时常见的解析频宽(RBW, Resolution Bandwidth)。简单的讲,RBW就是代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低于频谱分析仪的RBW,此时这两个信号将重叠在一起,难以分辨。如果使用较低的RBW 固然对分析不同频率信号有帮助,但是低的RBW 将滤除部分的高频率的信号,从而导致信号显示时产生失真,而这个失真值与设定的RBW 密切相关。较高的RBW 虽然有助于对宽带带信号的分析和检测,但是会增加噪声底层值(Noise Floor),而使得测试的灵敏度降低,对于侦测低强度的信号易产生阻碍,所以选择适当的RBW 宽度对正确使用频谱分析仪尤为重要。

另外一个重要参数就是视频频宽(VBW,Video Bandwidth),VBW所代表单一信号显示在屏幕所需的最低频宽。如前面所讲,在量测信号时,视频频宽需要选择适当,若是选择不当就会造成检测的困难。那么如何调整必须加以研究了。一般来讲,RBW 的频宽需要大于或者等于VBW,调整RBW 而信号振幅并无明显变化产生的时候,此时的RBW 就是可以采用的频宽。

输出RF载波时,信号经过频谱分析仪内部的混频器降低频率后再加以放大、滤波(RBW 决定)及检波显示等步骤,如果扫描太快,RBW 滤波器就会无法完全充电到信号的振幅峰值,这样就必须维持足够的扫描时间,另外扫描时间与RBW 的宽度为互动关系,所以RBW 较大,扫描时间也较快,反之也是一样的,因而选择适当的宽度的RBW就显得非常重要了。所以一般的说来,RBW较宽就能够充分地反应输入信号的波形与振幅,若是RBW较低就可以区别不同频率的信号。如果测是的信号为6MHz 频宽视讯频道,由经验可知,RBW 为300kHz 与3MHz 时,载波振幅的峰值并不产生显著变化,量测6MHz的视频信号一般都选用300kHz 的RBW 以降低噪声。而在进行天线信号量测时,频谱分析仪的展频(Span)常常会用100MHz,来获得宽广的信号频谱,此时的RBW使用3MHz。这些设置并不是一成不变,将会依以往的测试经验和现场状况加以调整。
4. 频谱分析仪的检测方法
频谱分析仪的检测方法,成都虹威科技为您介绍一二:

频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。

频谱分析仪它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。

传统的频谱分析仪的前端电路是一定带宽内可调谐的接收机,输入信号经变频器变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可

频谱分析仪

以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。但是,传统的频谱分析仪也有明显的缺点,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器。
相似回答